
CSE333, Spring 2020L13: C++ Heap

C++ Class Details, Heap
CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:
Ramya Challa Mengqui Chen John Depaszthory
Greg Guo Zachary Keyes CJ Lin
Travis McGaha Arjun Singh Guramrit Singh
Cosmo Wang Yifan Xu Robin Yang
Haoran Yu Velocity Yu

CSE333, Spring 2020L13: C++ Heap

Administrivia

v Yet another exercise released today, due Wed.
§ Rework exercise 10 but with dynamic memory this time

• Fine to use ex10 solution as a starting point for ex11

v …Homework 2 due Thursday night
§ File system crawler, indexer, and search engine

(no exercise due Friday…. J)

2

CSE333, Spring 2020L13: C++ Heap

We’re starting week 5!

v Congratulations on sticking with it and staying focused
§ And yes, it’s harder than usual – please speak up if we can help

v So we’re reaching midterm season
§ But no traditional midterm this quarter (already announced)

v So what do we want to do about other tests/quizzes?
§ Answer for this quarter based on our situation: none
§ We’ll have the usual collection of exercises and projects and will

focus on those

3

CSE333, Spring 2020L13: C++ Heap

Lecture Outline

v Class Details
§ Filling in some gaps from last time

v Using the Heap
§ new / delete / delete[]

4

CSE333, Spring 2020L13: C++ Heap

Rule of Three

v If you define any of:
1) Destructor
2) Copy Constructor
3) Assignment (operator=)

v Then you should normally define all three
§ Can explicitly ask for default synthesized versions (C++11):

5

class Point {
public:
Point() = default; // the default ctor
~Point() = default; // the default dtor
Point(const Point& copyme) = default; // the default cctor
Point& operator=(const Point& rhs) = default; // the default "="
...

CSE333, Spring 2020L13: C++ Heap

Dealing with the instanity

v C++ style guide tip:
§ If possible, disable the copy constructor and assignment operator.

C++11 has direct syntax to indicate this:

6

class Point {
public:
Point(const int x, const int y) : x_(x), y_(y) { } // ctor
...
Point(const Point& copyme) = delete; // declare cctor and "=" as
Point& operator=(const Point& rhs) = delete; // as deleted (C++11)

private:
...

}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point_2011.h

CSE333, Spring 2020L13: C++ Heap

If you’re dealing with old code…

v In pre-C++11 code the copy constructor and assignment
were often disabled by making them private and not
implementing them…

7

class Point {
public:
Point(const int x, const int y) : x_(x), y_(y) { } // ctor
...

private:
Point(const Point& copyme); // disable cctor (no def.)
Point& operator=(const Point& rhs); // disable "=" (no def.)
...

}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point.h

CSE333, Spring 2020L13: C++ Heap

struct vs. class

v In C, a struct can only contain data fields
§ Has no methods and all fields are always accessible

v In C++, struct and class are (nearly) the same!
§ Both define a new type (the struct or class name)
§ Both can have methods and member visibility (public/private/protected)
§ Only real (minor) difference: members are default public in a struct

and default private in a class

v Common style/usage convention:
§ Use struct for simple bundles of data
§ Use class for abstractions with data + functions

9

CSE333, Spring 2020L13: C++ Heap

Access Control

v Access modifiers for members:
§ public: accessible to all parts of the program
§ private: accessible to the member functions of the class

• Private to class, not object instances

§ protected: accessible to member functions of the class and
any derived classes (subclasses – more to come, later)

v Reminders:
§ Access modifiers apply to all members that follow until another

access modifier is reached
§ If no access modifier is specified, struct members default to
public and class members default to private

10

CSE333, Spring 2020L13: C++ Heap

Nonmember Functions

v “Nonmember functions” are just normal functions that
happen to use some class
§ Called like a regular function instead of as a member of a class

object instance
• This gets a little weird when we talk about operators…

§ These do not have access to the class’ private members

v Useful nonmember functions often included as part of
interface to a class
§ Declaration goes in header file, but outside of class definition
§ Super useful for class-related things like stream I/O (operator<<,

etc.), overloaded operators (operator+, etc.), …
11

CSE333, Spring 2020L13: C++ Heap

Review: Operator Overloading

v Can overload operators using member functions
§ Restriction: left-hand side argument must be a class you are

implementing

v Can overload operators using nonmember functions
§ No restriction on arguments (can specify any two)

• Our only option when the left-hand side is a class you do not have
control over, like ostream or istream.

§ But no access to private data members

12

Complex operator+(const Complex &a, const Complex &b) { ... }

Complex& operator+=(const Complex &a) { ... }

CSE333, Spring 2020L13: C++ Heap

friend Nonmember Functions

v A class can give a nonmember function (or class) access to
its nonpublic members by declaring it as a friend
within its definition
§ friend function is not a class member, but has access privileges

as if it were
§ friend functions are usually unnecessary if your class includes

appropriate “getter” public functions

13

class Complex {
...
friend std::istream& operator>>(std::istream& in, Complex& a);
...

}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
...

}

Complex.h

Complex.cc

CSE333, Spring 2020L13: C++ Heap

Namespaces

v Each namespace is a separate scope
§ Useful for avoiding symbol collisions

v Namespace definition:
§ namespace name {

// declarations go here
}

§ Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)
• This means that components (classes, functions, etc.) of a namespace

can be defined in multiple source files

14

namespace name {
// declarations go here

}

CSE333, Spring 2020L13: C++ Heap

Classes vs. Namespaces

v They seems somewhat similar, but classes are not
namespaces:

§ There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

§ To access a member of a namespace, you must use the fully
qualified name (i.e. nsp_name::member)
• Unless you are using that namespace
• You only used the fully qualified name of a class member when you

are defining it outside of the scope of the class definition

15

CSE333, Spring 2020L13: C++ Heap

Lecture Outline

v Class Details
§ Filling in some gaps from last time

v Using the Heap
§ new / delete / delete[]

16

CSE333, Spring 2020L13: C++ Heap

C++11 nullptr

v C and C++ have long used NULL as a pointer value that
references nothing

v C++11 introduced a new literal for this: nullptr
§ New reserved word
§ Interchangeable with NULL for all practical purposes, but it has

type T* for any/every T, and is not an integer value
• Avoids funny edge cases (see C++ references for details)
• Still can convert to/from integer 0 for tests, assignment, etc.

§ Advice: prefer nullptr in C++11 code
• Though NULL will also be around for a long, long time

17

CSE333, Spring 2020L13: C++ Heap

new/delete

v To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h
§ You can use new to allocate an object (e.g. new Point)

• Will execute appropriate constructor as part of object allocate/create

§ You can use new to allocate a primitive type (e.g. new int)

v To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free() from stdlib.h
§ Don’t mix and match!

• Never free() something allocated with new
• Never delete something allocated with malloc()
• Careful if you’re using a legacy C code library or module in C++

18

CSE333, Spring 2020L13: C++ Heap

new/delete Example

#include "Point.h"
using namespace std;

... // definitions of AllocateInt() and AllocatePoint()

int main() {
Point* x = AllocatePoint(1, 2);
int* y = AllocateInt(3);

cout << "x's x_ coord: " << x->get_x() << endl;
cout << "y: " << y << ", *y: " << *y << endl;

delete x;
delete y;
return 0;

}

int* AllocateInt(int x) {
int* heapy_int = new int;
*heapy_int = x;
return heapy_int;

}

Point* AllocatePoint(int x, int y) {
Point* heapy_pt = new Point(x,y);
return heapy_pt;

}

heappoint.cc

19

CSE333, Spring 2020L13: C++ Heap

Dynamically Allocated Arrays

v To dynamically allocate an array:
§ Default initialize:

v To dynamically deallocate an array:
§ Use delete[] name;
§ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t
always tell if name* was allocated with new type[size];
or new type;
– Especially inside a function where a pointer parameter could point to a

single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

type* name = new type[size];

delete[] name;

20

CSE333, Spring 2020L13: C++ Heap

Arrays Example (primitive)
#include "Point.h"
using namespace std;

int main() {
int stack_int;
int* heap_int = new int;
int* heap_init_int = new int(12);

int stack_arr[10];
int* heap_arr = new int[10];

int* heap_init_arr = new int[10](); // uncommon usage
int* heap_init_error = new int[10](12); // bad syntax

...

delete heap_int; //
delete heap_init_int; //
delete heap_arr; //
delete[] heap_init_arr; //

return 0;
}

21

arrays.cc

CSE333, Spring 2020L13: C++ Heap

Arrays Example (class objects)
#include "Point.h"
using namespace std;

int main() {
...

Point stack_point(1, 2);
Point* heap_point = new Point(1, 2);

Point* err_pt_arr = new Point[10]; // no Point() ctor

Point* err2_pt_arr = new Point[10](1,2); // bad syntax
...

delete heap_point;

...

return 0;
}

22

arrays.cc

CSE333, Spring 2020L13: C++ Heap

malloc vs. new
malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything arrays, structs, objects,
primitives

Returns a void*
(should be cast)

appropriate pointer type
(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

23

CSE333, Spring 2020L13: C++ Heap

Heap Member Example

v Let’s build a class to simulate some of the functionality of
the C++ string
§ Internal representation: c-string to hold characters

v What might we want to implement in the class?

25

CSE333, Spring 2020L13: C++ Heap

Str Class Walkthrough

26

#include <iostream>
using namespace std;

class Str {
public:
Str(); // default ctor
Str(const char* s); // c-string ctor
Str(const Str& s); // copy ctor
~Str(); // dtor

int length() const; // return length of string
char* c_str() const; // return a copy of st_
void append(const Str& s);

Str& operator=(const Str& s); // string assignment

friend std::ostream& operator<<(std::ostream& out, const Str& s);

private:
char* st_; // c-string on heap (terminated by '\0')

}; // class Str

Str.h

CSE333, Spring 2020L13: C++ Heap

Str Example Walkthrough

See:
Str.h

Str.cc

strtest.cc

v Look carefully at assignment operator=
§ self-assignment test is especially important here

28

CSE333, Spring 2020L13: C++ Heap

Extra Exercise #1

v Write a C++ function that:
§ Uses new to dynamically allocate an array of strings and uses
delete[] to free it

§ Uses new to dynamically allocate an array of pointers to strings
• Assign each entry of the array to a string allocated using new

§ Cleans up before exiting
• Use delete to delete each allocated string
• Uses delete[] to delete the string pointer array
• (whew!)

29

