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Administrivia

v Yet another exercise released today, due Wed.
§ Rework exercise 10 but with dynamic memory this time

• Fine to use ex10 solution as a starting point for ex11

v …Homework 2 due Thursday night
§ File system crawler, indexer, and search engine

(no exercise due Friday…. J)
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We’re starting week 5!

v Congratulations on sticking with it and staying focused
§ And yes, it’s harder than usual – please speak up if we can help

v So we’re reaching midterm season
§ But no traditional midterm this quarter (already announced)

v So what do we want to do about other tests/quizzes?
§ Answer for this quarter based on our situation: none
§ We’ll have the usual collection of exercises and projects and will 

focus on those
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Lecture Outline

v Class Details
§ Filling in some gaps from last time

v Using the Heap
§ new / delete / delete[]
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Rule of Three

v If you define any of:
1) Destructor
2) Copy Constructor
3) Assignment (operator=)

v Then you should normally define all three
§ Can explicitly ask for default synthesized versions (C++11):
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class Point {
public:
Point() = default;                            // the default ctor
~Point() = default;                           // the default dtor
Point(const Point& copyme) = default;         // the default cctor
Point& operator=(const Point& rhs) = default; // the default "="
...
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Dealing with the instanity

v C++ style guide tip:
§ If possible, disable the copy constructor and assignment operator.  

C++11 has direct syntax to indicate this:
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class Point {
public:
Point(const int x, const int y) : x_(x), y_(y) { }  // ctor
...
Point(const Point& copyme) = delete;   // declare cctor and "=" as
Point& operator=(const Point& rhs) = delete; // as deleted (C++11)

private:
...

};  // class Point

Point w;        // compiler error (no default constructor)
Point x(1, 2);  // OK!
Point y = w;    // compiler error (no copy constructor)
y = x;          // compiler error (no assignment operator)

Point_2011.h
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If you’re dealing with old code…

v In pre-C++11 code the copy constructor and assignment 
were often disabled by making them private and not 
implementing them…
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class Point {
public:
Point(const int x, const int y) : x_(x), y_(y) { }  // ctor
...

private:
Point(const Point& copyme);          // disable cctor (no def.)
Point& operator=(const Point& rhs);  // disable "=" (no def.)
...

};  // class Point

Point w;        // compiler error (no default constructor)
Point x(1, 2);  // OK!
Point y = w;    // compiler error (no copy constructor)
y = x;          // compiler error (no assignment operator)

Point.h
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struct vs. class

v In C, a struct can only contain data fields
§ Has no methods and all fields are always accessible

v In C++, struct and class are (nearly) the same!
§ Both define a new type (the struct or class name)
§ Both can have methods and member visibility (public/private/protected)
§ Only real (minor) difference: members are default public in a struct

and default private in a class

v Common style/usage convention:
§ Use struct for simple bundles of data
§ Use class for abstractions with data + functions
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Access Control

v Access modifiers for members:
§ public: accessible to all parts of the program
§ private: accessible to the member functions of the class

• Private to class, not object instances

§ protected: accessible to member functions of the class and 
any derived classes (subclasses – more to come, later)

v Reminders:
§ Access modifiers apply to all members that follow until another 

access modifier is reached
§ If no access modifier is specified, struct members default to 
public and class members default to private
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Nonmember Functions

v “Nonmember functions” are just normal functions that 
happen to use some class
§ Called like a regular function instead of as a member of a class 

object instance
• This gets a little weird when we talk about operators…

§ These do not have access to the class’ private members

v Useful nonmember functions often included as part of 
interface to a class
§ Declaration goes in header file, but outside of class definition
§ Super useful for class-related things like stream I/O (operator<<, 

etc.), overloaded operators (operator+, etc.), …
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Review: Operator Overloading

v Can overload operators using member functions
§ Restriction: left-hand side argument must be a class you are 

implementing

v Can overload operators using nonmember functions
§ No restriction on arguments (can specify any two)

• Our only option when the left-hand side is a class you do not have 
control over, like ostream or istream.

§ But no access to private data members

12

Complex operator+(const Complex &a, const Complex &b) { ... }

Complex& operator+=(const Complex &a) { ... }
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friend Nonmember Functions

v A class can give a nonmember function (or class) access to 
its nonpublic members by declaring it as a friend
within its definition
§ friend function is not a class member, but has access privileges 

as if it were
§ friend functions are usually unnecessary if your class includes 

appropriate “getter” public functions
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class Complex {
...
friend std::istream& operator>>(std::istream& in, Complex& a);
...

};  // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
...

}

Complex.h

Complex.cc
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Namespaces

v Each namespace is a separate scope
§ Useful for avoiding symbol collisions

v Namespace definition:
§ namespace name {

// declarations go here
}

§ Creates a new namespace name if it did not exist, otherwise adds 
to the existing namespace (!)
• This means that components (classes, functions, etc.) of a namespace 

can be defined in multiple source files
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namespace name {
// declarations go here

}
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Classes vs. Namespaces

v They seems somewhat similar, but classes are not
namespaces:

§ There are no instances/objects of a namespace; a namespace is 
just a group of logically-related things (classes, functions, etc.)

§ To access a member of a namespace, you must use the fully 
qualified name (i.e. nsp_name::member)
• Unless you are using that namespace
• You only used the fully qualified name of a class member when you 

are defining it outside of the scope of the class definition
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Lecture Outline

v Class Details
§ Filling in some gaps from last time

v Using the Heap
§ new / delete / delete[]
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C++11 nullptr

v C and C++ have long used NULL as a pointer value that 
references nothing

v C++11 introduced a new literal for this: nullptr
§ New reserved word
§ Interchangeable with NULL for all practical purposes, but it has 

type T* for any/every T, and is not an integer value
• Avoids funny edge cases (see C++ references for details)
• Still can convert to/from integer 0 for tests, assignment, etc.

§ Advice: prefer nullptr in C++11 code
• Though NULL will also be around for a long, long time
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new/delete

v To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h
§ You can use new to allocate an object (e.g. new Point)

• Will execute appropriate constructor as part of object allocate/create

§ You can use new to allocate a primitive type (e.g. new int)

v To deallocate a heap-allocated object or primitive, use the 
delete keyword instead of free() from stdlib.h
§ Don’t mix and match!

• Never free() something allocated with new
• Never delete something allocated with malloc()
• Careful if you’re using a legacy C code library or module in C++
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new/delete Example

#include "Point.h"
using namespace std;

...  // definitions of AllocateInt() and AllocatePoint()

int main() {
Point* x = AllocatePoint(1, 2);
int* y = AllocateInt(3);

cout << "x's x_ coord: " << x->get_x() << endl;
cout << "y: " << y << ", *y: " << *y << endl;

delete x;
delete y;
return 0;

}

int* AllocateInt(int x) {
int* heapy_int = new int;
*heapy_int = x;
return heapy_int;

}

Point* AllocatePoint(int x, int y) {
Point* heapy_pt = new Point(x,y);
return heapy_pt;

}

heappoint.cc
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Dynamically Allocated Arrays

v To dynamically allocate an array:
§ Default initialize:

v To dynamically deallocate an array:
§ Use delete[] name;
§ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t 
always tell if name* was allocated with new type[size];
or new type;
– Especially inside a function where a pointer parameter could point to a 

single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

type* name = new type[size];

delete[] name;
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Arrays Example (primitive)
#include "Point.h"
using namespace std;

int main() {
int stack_int;
int* heap_int = new int;
int* heap_init_int = new int(12);

int stack_arr[10];
int* heap_arr = new int[10];

int* heap_init_arr = new int[10]();  // uncommon usage
int* heap_init_error = new int[10](12); // bad syntax

...

delete heap_int;         //
delete heap_init_int;    //
delete heap_arr;         //
delete[] heap_init_arr;  //

return 0;
}
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arrays.cc
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Arrays Example (class objects)
#include "Point.h"
using namespace std;

int main() {
...

Point stack_point(1, 2);
Point* heap_point = new Point(1, 2);

Point* err_pt_arr = new Point[10];  // no Point() ctor

Point* err2_pt_arr = new Point[10](1,2); // bad syntax
...

delete heap_point;

...

return 0;
}
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arrays.cc
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malloc vs. new
malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything arrays, structs, objects, 
primitives

Returns a void*
(should be cast)

appropriate pointer type
(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]
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Heap Member Example

v Let’s build a class to simulate some of the functionality of 
the C++ string
§ Internal representation: c-string to hold characters

v What might we want to implement in the class?
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Str Class Walkthrough
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#include <iostream>
using namespace std;

class Str {
public:
Str();               // default ctor
Str(const char* s);  // c-string ctor
Str(const Str& s);   // copy ctor
~Str();              // dtor

int length() const;  // return length of string
char* c_str() const; // return a copy of st_
void append(const Str& s);

Str& operator=(const Str& s);  // string assignment

friend std::ostream& operator<<(std::ostream& out, const Str& s);

private:
char* st_;  // c-string on heap (terminated by '\0')

};  // class Str

Str.h
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Str Example Walkthrough

See:
Str.h

Str.cc

strtest.cc

v Look carefully at assignment operator=
§ self-assignment test is especially important here
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Extra Exercise #1

v Write a C++ function that:
§ Uses new to dynamically allocate an array of strings and uses 
delete[] to free it

§ Uses new to dynamically allocate an array of pointers to strings
• Assign each entry of the array to a string allocated using new

§ Cleans up before exiting
• Use delete to delete each allocated string
• Uses delete[] to delete the string pointer array
• (whew!)
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