
CSE333, Spring 2020L11: References, Const, Classes

C++ References, Const, Classes
CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:
Ramya Challa Mengqui Chen John Depaszthory
Greg Guo Zachary Keyes CJ Lin
Travis McGaha Arjun Singh Guramrit Singh
Cosmo Wang Yifan Xu Robin Yang
Haoran Yu Velocity Yu

CSE333, Spring 2020L11: References, Const, Classes

Administrivia

v Yet another exercise released today, due Friday
v Sections this week: C++ classes, references, const

§ Worksheet will be posted later today – download/print before section if
you can (we’ll try to do this each week)

v Homework 2 due next Thursday (4/30)
§ Note: libhw1.a (yours or ours) needs to be in correct directory

(hw1/) for hw2 to build
§ Use Ctrl-D to exit searchshell; must free all allocated memory
§ Test on directory of small self-made files
§ Valgrind takes a long time on the full test_tree. Try using enron docs

only or other small test data directory.

v (And: your instructor is way behind on individual email msgs.
Will try to catch up over the next several days)

2

CSE333, Spring 2020L11: References, Const, Classes

Lecture Outline

v C++ References
v const in C++
v C++ Classes Intro

3

CSE333, Spring 2020L11: References, Const, Classes

Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z

Note: Arrow points
to next instruction.

4

CSE333, Spring 2020L11: References, Const, Classes

Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

5

CSE333, Spring 2020L11: References, Const, Classes

Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 6

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

6

CSE333, Spring 2020L11: References, Const, Classes

Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

7

CSE333, Spring 2020L11: References, Const, Classes

Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a0

Note: Arrow points
to next instruction.

8

CSE333, Spring 2020L11: References, Const, Classes

Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 11

z 0x7fff…a0

Note: Arrow points
to next instruction.

9

CSE333, Spring 2020L11: References, Const, Classes

References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x 5

y 10

Note: Arrow points
to next instruction.

10

CSE333, Spring 2020L11: References, Const, Classes

References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 5

y 10

Note: Arrow points
to next instruction.

11

CSE333, Spring 2020L11: References, Const, Classes

References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 6

y 10

Note: Arrow points
to next instruction.

12

CSE333, Spring 2020L11: References, Const, Classes

References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 7

y 10

Note: Arrow points
to next instruction.

13

CSE333, Spring 2020L11: References, Const, Classes

References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 10

y 10

Note: Arrow points
to next instruction.

14

CSE333, Spring 2020L11: References, Const, Classes

References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11

return EXIT_SUCCESS;
}

reference.cc

x, z 11

y 10

Note: Arrow points
to next instruction.

15

CSE333, Spring 2020L11: References, Const, Classes

Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

16

CSE333, Spring 2020L11: References, Const, Classes

Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp

17

CSE333, Spring 2020L11: References, Const, Classes

Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp 5

18

CSE333, Spring 2020L11: References, Const, Classes

Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

10

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp 5

19

CSE333, Spring 2020L11: References, Const, Classes

Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

10

(main) b
(swap) y

5

Note: Arrow points
to next instruction.

(swap) tmp 5

20

CSE333, Spring 2020L11: References, Const, Classes

Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 10

(main) b 5

Note: Arrow points
to next instruction.

21

CSE333, Spring 2020L11: References, Const, Classes

Lecture Outline

v C++ References
v const in C++
v C++ Classes Intro

22

CSE333, Spring 2020L11: References, Const, Classes

const

v const: this cannot be changed/mutated
§ Used much more in C++ than in C
§ Signal of intent to compiler; meaningless at hardware level

• Results in compile-time errors

void BrokenPrintSquare(const int& i) {
i = i*i; // compiler error here!
std::cout << i << std::endl;

}

int main(int argc, char** argv) {
int j = 2;
BrokenPrintSquare(j);
return EXIT_SUCCESS;

}

brokenpassbyrefconst.cc
23

CSE333, Spring 2020L11: References, Const, Classes

const and Pointers

v Pointers can change data in two different contexts:
1) You can change the value of the pointer (what it points to)
2) You can change the thing the pointer points to (via dereference)

v const can be used to prevent either/both of these
behaviors!
§ const next to pointer name means you can’t change the value of

the pointer
§ const next to data type pointed to means you can’t use this

pointer to change the thing being pointed to
§ Tip: read variable declaration from right-to-left

24

CSE333, Spring 2020L11: References, Const, Classes

const and Pointers

v The syntax with pointers is confusing:
int main(int argc, char** argv) {

int x = 5; // int
const int y = 6; // (const int)
y++; // compiler error

const int *z = &y; // pointer to a (const int)
*z += 1; // compiler error
z++; // ok

int *const w = &x; // (const pointer) to a (variable int)
*w += 1; // ok
w++; // compiler error

const int *const v = &x; // (const pointer) to a (const int)
*v += 1; // compiler error
v++; // compiler error

return EXIT_SUCCESS;
}

constmadness.cc 25

CSE333, Spring 2020L11: References, Const, Classes

const Parameters

v A const parameter cannot
be mutated inside the
function
§ Therefore it does not matter if

the argument can be mutated
or not

v A non-const parameter
could be mutated inside the
function
§ It would be BAD if you could

pass it a const var
§ Illegal regardless of whether

or not the function actually
tries to change the var

26

void foo(const int* y) {
std::cout << *y << std::endl;

}

void bar(int* y) {
std::cout << *y << std::endl;

}

int main(int argc, char** argv) {
const int a = 10;
int b = 20;

foo(&a); // OK
foo(&b); // OK
bar(&a); // not OK – error
bar(&b); // OK

return EXIT_SUCCESS;
}

CSE333, Spring 2020L11: References, Const, Classes

Google Style Guide Convention

v Use const references or call-by-value for input values
§ Particularly for large values (no copying)

v Use pointers for output parameters
v List input parameters first, then output parameters last

28

void CalcArea(const int& width, const int& height,
int* const area) {

*area = width * height;
}

int main(int argc, char** argv) {
int w = 10, h = 20, a;
CalcArea(w, h, &a);
return EXIT_SUCCESS;

}

styleguide.cc

ordinary int probably
better here, but

shows how const ref
works

ordinary int (not int&)
probably better here,
but shows how const

ref is used

CSE333, Spring 2020L11: References, Const, Classes

When to Use References?

v A stylistic choice, not mandated by the C++ language

v Google C++ style guide suggests:
§ Input parameters:

• Either use values (for primitive types like int or small
structs/objects)

• Or use const references (for complex struct/object instances)

§ Output parameters:
• Use const pointers

– Unchangeable pointers referencing changeable data

29

CSE333, Spring 2020L11: References, Const, Classes

Lecture Outline

v C++ References
v const in C++
v C++ Classes Intro

30

CSE333, Spring 2020L11: References, Const, Classes

Classes

v Class definition syntax (in a .h file):

§ Members can be functions (methods) or data (variables)

v Class member function definition syntax (in a .cc file):

§ (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

31

class Name {
public:
// public member declarations & definitions go here

private:
// private member delarations & definitions go here

}; // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {
// body statements

}

CSE333, Spring 2020L11: References, Const, Classes

Class Organization

v It’s a little more complex than in C when modularizing
with struct definition:
§ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)

§ Usually put member function definitions into companion .cc file
with implementation details
• Common exception: setter and getter methods

§ These files can also include non-member functions that use the
class (more about this later)

v Unlike Java, you can name files anything you want
§ But normally Name.cc and Name.h for class Name

32

CSE333, Spring 2020L11: References, Const, Classes

Class Definition (.h file)

33

#ifndef _POINT_H_
#define _POINT_H_

class Point {
public:
Point(const int x, const int y); // constructor
int get_x() const { return x_; } // inline member function
int get_y() const { return y_; } // inline member function
double Distance(const Point& p) const; // member function
void SetLocation(const int x, const int y); // member function

private:
int x_; // data member
int y_; // data member

}; // class Point

#endif // _POINT_H_

Point.h

CSE333, Spring 2020L11: References, Const, Classes

Class Member Definitions (.cc file)

34

#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
x_ = x;
this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {
// We can access p’s x_ and y_ variables either through the
// get_x(), get_y() accessor functions or the x_, y_ private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x_ - p.get_x()) * (x_ - p.get_x());
distance += (y_ - p.y_) * (y_ - p.y_);
return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {
x_ = x;
y_ = y;

}

Point.cc

CSE333, Spring 2020L11: References, Const, Classes

Class Usage (.cc file)

35

#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
Point p1(1, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

cout << "p1 is: (" << p1.get_x() << ", ";
cout << p1.get_y() << ")" << endl;

cout << "p2 is: (" << p2.get_x() << ", ";
cout << p2.get_y() << ")" << endl;

cout << "dist : " << p1.Distance(p2) << endl;
return 0;

}

usepoint.cc

CSE333, Spring 2020L11: References, Const, Classes

Reading Assignment

v Before next time, you must read the sections in C++
Primer covering class constructors, copy constructors,
assignment (operator=), and destructors
§ Ignore “move semantics” for now
§ The table of contents and index are your friends…
§ Should we start class with a quiz next time?
§ Seriously – the next lecture will make a lot more sense if you’ve

done your background reading ahead of time
• Don’t worry whether it all makes sense the first time you read it – it

won’t! The goal is to be aware of what the main issues are….

36

CSE333, Spring 2020L11: References, Const, Classes

Extra Exercise #1

v Write a C++ program that:
§ Has a class representing a 3-dimensional point
§ Has the following methods:

• Return the inner product of two 3D points
• Return the distance between two 3D points
• Accessors and mutators for the x, y, and z coordinates

37

CSE333, Spring 2020L11: References, Const, Classes

Extra Exercise #2

v Write a C++ program that:
§ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

§ Has the following methods:
• Test if one box is inside another box
• Return the volume of a box
• Handles <<, =, and a copy constructor
• Uses const in all the right places

38

