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Administrivia

v Yet another exercise released today, due Friday
v Sections this week: C++ classes, references, const

§ Worksheet will be posted later today – download/print before section if 
you can (we’ll try to do this each week)

v Homework 2 due next Thursday (4/30)
§ Note: libhw1.a (yours or ours) needs to be in correct directory 

(hw1/) for hw2 to build
§ Use Ctrl-D to exit searchshell; must free all allocated memory
§ Test on directory of small self-made files
§ Valgrind takes a long time on the full test_tree.  Try using enron docs 

only or other small test data directory.

v (And: your instructor is way behind on individual email msgs.  
Will try to catch up over the next several days)
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Lecture Outline

v C++ References
v const in C++
v C++ Classes Intro
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Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you 

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;  
x += 1;  

z = &y;  
*z += 1;  

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z

Note: Arrow points 
to next instruction.
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Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you 

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;  
x += 1;  

z = &y;  
*z += 1;  

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you 

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;  // sets x to 6
x += 1;  

z = &y;  
*z += 1;  

return EXIT_SUCCESS;
}

pointer.cc

x 6

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you 

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;  // sets x to 6
x += 1;  // sets x (and *z) to 7

z = &y;  
*z += 1;  

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you 

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;  // sets x to 6
x += 1;  // sets x (and *z) to 7

z = &y;  // sets z to the address of y
*z += 1;  

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a0

Note: Arrow points 
to next instruction.
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Pointers Reminder

v A pointer is a variable containing an address
§ Modifying the pointer doesn’t modify what it points to, but you 

can access/modify what it points to by dereferencing
§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;  // sets x to 6
x += 1;  // sets x (and *z) to 7

z = &y;  // sets z to the address of y
*z += 1;  // sets y (and *z) to 11

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 11

z 0x7fff…a0

Note: Arrow points 
to next instruction.
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References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; 

z += 1;  
x += 1;  

z  = y;  
z += 1;  

return EXIT_SUCCESS;
}

reference.cc

x 5

y 10

Note: Arrow points 
to next instruction.
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References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;  // binds the name "z" to x

z += 1;  
x += 1;  

z  = y;  
z += 1;  

return EXIT_SUCCESS;
}

reference.cc

x, z 5

y 10

Note: Arrow points 
to next instruction.
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References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;  // binds the name "z" to x

z += 1;  // sets z (and x) to 6
x += 1;  

z  = y;  
z += 1;  

return EXIT_SUCCESS;
}

reference.cc

x, z 6

y 10

Note: Arrow points 
to next instruction.
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References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;  // binds the name "z" to x

z += 1;  // sets z (and x) to 6
x += 1;  // sets x (and z) to 7

z  = y;  
z += 1;  

return EXIT_SUCCESS;
}

reference.cc

x, z 7

y 10

Note: Arrow points 
to next instruction.
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References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;  // binds the name "z" to x

z += 1;  // sets z (and x) to 6
x += 1;  // sets x (and z) to 7

z  = y;  // sets z (and x) to the value of y
z += 1;  

return EXIT_SUCCESS;
}

reference.cc

x, z 10

y 10

Note: Arrow points 
to next instruction.
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References

v A reference is an alias for another variable
§ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;  // binds the name "z" to x

z += 1;  // sets z (and x) to 6
x += 1;  // sets x (and z) to 7

z  = y;  // sets z (and x) to the value of y
z += 1;  // sets z (and x) to 11

return EXIT_SUCCESS;
}

reference.cc

x, z 11

y 10

Note: Arrow points 
to next instruction.
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Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 5

(main) b 10

Note: Arrow points 
to next instruction.
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Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points 
to next instruction.

(swap) tmp
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Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points 
to next instruction.

(swap) tmp 5
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Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

10

(main) b
(swap) y

10

Note: Arrow points 
to next instruction.

(swap) tmp 5
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Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

10

(main) b
(swap) y

5

Note: Arrow points 
to next instruction.

(swap) tmp 5
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Pass-By-Reference

v C++ allows you to use real pass-by-reference
§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax
• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 10

(main) b 5

Note: Arrow points 
to next instruction.
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Lecture Outline

v C++ References
v const in C++
v C++ Classes Intro
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const

v const: this cannot be changed/mutated
§ Used much more in C++ than in C
§ Signal of intent to compiler; meaningless at hardware level

• Results in compile-time errors

void BrokenPrintSquare(const int& i) {
i = i*i;  // compiler error here!
std::cout << i << std::endl;

}

int main(int argc, char** argv) {
int j = 2;
BrokenPrintSquare(j);
return EXIT_SUCCESS;

}

brokenpassbyrefconst.cc
23
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const and Pointers

v Pointers can change data in two different contexts:
1) You can change the value of the pointer (what it points to)
2) You can change the thing the pointer points to (via dereference)

v const can be used to prevent either/both of these 
behaviors!
§ const next to pointer name means you can’t change the value of 

the pointer
§ const next to data type pointed to means you can’t use this 

pointer to change the thing being pointed to
§ Tip: read variable declaration from right-to-left
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const and Pointers

v The syntax with pointers is confusing:
int main(int argc, char** argv) {

int x = 5;               // int
const int y = 6;         // (const int)
y++;                     // compiler error

const int *z = &y;       // pointer to a (const int)
*z += 1;                 // compiler error
z++;                     // ok

int *const w = &x;       // (const pointer) to a (variable int)
*w += 1;                 // ok
w++;                     // compiler error

const int *const v = &x; // (const pointer) to a (const int)
*v += 1;                 // compiler error
v++;                     // compiler error

return EXIT_SUCCESS;
}

constmadness.cc 25
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const Parameters

v A const parameter cannot
be mutated inside the 
function
§ Therefore it does not matter if 

the argument can be mutated 
or not

v A non-const parameter 
could be mutated inside the 
function
§ It would be BAD if you could 

pass it a const var
§ Illegal regardless of whether 

or not the function actually 
tries to change the var

26

void foo(const int* y) {
std::cout << *y << std::endl;

}

void bar(int* y) {
std::cout << *y << std::endl;

}

int main(int argc, char** argv) {
const int a = 10;
int b = 20;

foo(&a);   // OK
foo(&b);   // OK
bar(&a);   // not OK – error
bar(&b);   // OK

return EXIT_SUCCESS;
}
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Google Style Guide Convention

v Use const references or call-by-value for input values
§ Particularly for large values (no copying)

v Use pointers for output parameters
v List input parameters first, then output parameters last

28

void CalcArea(const int& width, const int& height,
int* const area) {

*area = width * height;
}

int main(int argc, char** argv) {
int w = 10, h = 20, a;
CalcArea(w, h, &a);
return EXIT_SUCCESS;

}

styleguide.cc

ordinary int probably 
better here, but 

shows how const ref 
works

ordinary int (not int&) 
probably better here, 
but shows how const 

ref is used
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When to Use References?

v A stylistic choice, not mandated by the C++ language

v Google C++ style guide suggests:
§ Input parameters:

• Either use values (for primitive types like int or small 
structs/objects)

• Or use const references (for complex struct/object instances)

§ Output parameters:
• Use const pointers

– Unchangeable pointers referencing changeable data
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Lecture Outline

v C++ References
v const in C++
v C++ Classes Intro
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Classes

v Class definition syntax (in a .h file):

§ Members can be functions (methods) or data (variables)

v Class member function definition syntax (in a .cc file):

§ (1) define within the class definition or (2) declare within the class 
definition and then define elsewhere

31

class Name {
public:
// public member declarations & definitions go here

private:
// private member delarations & definitions go here

};  // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {
// body statements

}
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Class Organization

v It’s a little more complex than in C when modularizing 
with struct definition:
§ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)

§ Usually put member function definitions into companion .cc file 
with implementation details
• Common exception:  setter and getter methods

§ These files can also include non-member functions that use the 
class (more about this later)

v Unlike Java, you can name files anything you want
§ But normally Name.cc and Name.h for class Name

32
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Class Definition (.h file)

33

#ifndef _POINT_H_
#define _POINT_H_

class Point {
public:
Point(const int x, const int y);     // constructor
int get_x() const { return x_; }     // inline member function
int get_y() const { return y_; }     // inline member function
double Distance(const Point& p) const;      // member function
void SetLocation(const int x, const int y); // member function

private:
int x_;  // data member
int y_;  // data member

};  // class Point

#endif // _POINT_H_

Point.h
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Class Member Definitions (.cc file)

34

#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
x_ = x;
this->y_ = y;  // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {
// We can access p’s x_ and y_ variables either through the
// get_x(), get_y() accessor functions or the x_, y_ private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x_ - p.get_x()) * (x_ - p.get_x());
distance += (y_ - p.y_) * (y_ - p.y_);
return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {
x_ = x;
y_ = y;

}

Point.cc
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Class Usage (.cc file)

35

#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
Point p1(1, 2);  // allocate a new Point on the Stack
Point p2(4, 6);  // allocate a new Point on the Stack

cout << "p1 is: (" << p1.get_x() << ", ";
cout << p1.get_y() << ")" << endl;

cout << "p2 is: (" << p2.get_x() << ", ";
cout << p2.get_y() << ")" << endl;

cout << "dist : " << p1.Distance(p2) << endl;
return 0;

}

usepoint.cc
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Reading Assignment

v Before next time, you must read the sections in C++ 
Primer covering class constructors, copy constructors, 
assignment (operator=), and destructors
§ Ignore “move semantics” for now
§ The table of contents and index are your friends…
§ Should we start class with a quiz next time?
§ Seriously – the next lecture will make a lot more sense if you’ve 

done your background reading ahead of time
• Don’t worry whether it all makes sense the first time you read it – it 

won’t!  The goal is to be aware of what the main issues are….
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Extra Exercise #1

v Write a C++ program that:
§ Has a class representing a 3-dimensional point
§ Has the following methods:

• Return the inner product of two 3D points
• Return the distance between two 3D points
• Accessors and mutators for the x, y, and z coordinates

37
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Extra Exercise #2

v Write a C++ program that:
§ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the 
vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the 
axes, so you only need 2 vertices to define it

§ Has the following methods:
• Test if one box is inside another box
• Return the volume of a box
• Handles <<, =, and a copy constructor
• Uses const in all the right places

38


