CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON LO6: C Details

Final C Details
CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:

Ramya Challa Mengqui Chen
Greg Guo Zachary Keyes
Travis McGaha Arjun Singh
Cosmo Wang Yifan Xu

Haoran Yu Velocity Yu

John Depaszthory
CJ Lin

Guramrit Singh
Robin Yang

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Administrivia

+» Today: C wrapup, Makefiles

+ Exercise 5 posted yesterday afternoon; due Monday
morning

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Administrivia

HW1 due Thursday night

= Write and run little tests to track down problems (don’t kill lots of time
debugging large test_suite code)

= gdb hint: What if Veri £y333 fails? How can you debug it? Answer:
look at the Verify333 macro (#define), figure out what function it
calls on failure, and put a breakpoint there

J
0’0

Remember: the only supported systems for the class are the
Allen School Linux machines (workstations, attus, home VM).
You should be working on those systems and the projects you
build must work there.

= We do not have the cycles to try to support other Unix-like things or
chase bugs due to configuration or software differences (including file
transfers to/from Windows systems)

J
0’0

= “Bug” reports caused by other configurations that do not identify the
other system are not complete or appropriate

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Administrivia

L)

Homework 1 due on Thursday

Advice: be sure to read headers carefully while implementing

Advice: use git add/commit/push often to save your work

- But don’t use gitlab to copy files so you can edit them on one system and
run on another — just work in CSE Linux environment (VM or remotely)

Watch that HashTable. c doesn’t violate the modularity of
LinkedList.h (i.e., don’t mess with private implementation stuff)

Watch for pointers to local (stack) variables (Ox7fff... addresses)
Keep track of types of things — draw memory diagrams

Use a debugger (e.g. gdb) if you’'re getting segfaults — fix reality!
Advice: leave “step #” markers to help graders navigate

Late days: don’t tag hwl-final until you are really ready

Extra Credit: if you add unit tests, put them in a new file and adjust the
Makefile

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Lecture Outline

+» Header Guards and Preprocessor Tricks
+ Visibility of Symbols

" extern,static

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

An #include Problem

+» What happens when we compile foo.c?

struct pair { [#include "pair.h")
int a, b;
I // a useful function
. struct pair* make pair(int a, 1int b);
pair.h - - J

util.h

(#include "pair.h"
#include "util.h"

int main(int argc, char** argv) {
// do stuff here

return 0;

\} _J
foo.c

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

An #include Problem

+» What happens when we compile foo.c?

bash$ gcc -Wall -g -o foo foo.c
In file included from util.h:1:0,
from foo.c:2:

pair.h:1:8: error: redefinition of 'struct pair'
struct pair { int a, b; };

A

In file included from foo.c:1:0:

pair.h:1:8: note: originally defined here
struct pair { int a, b; };

A

pair.n
+ foo.cincludes pair.h twice! 7
= Second time isindirectly viautil.h foo.c

= Struct definition shows up twice -
- Can see using cpp util.h

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Header Guards

+ A standard C Preprocessor trick to deal with this

= Uses macro definition (#define)in combination with
conditional compilation (#1fndef and #endi f)

(4ifndef PAIR H Y (#ifndef UTIL H h
#define PAIR H #define UTIL H
struct pair { finclude "pair.h"
int a, b;
} s // a useful function

struct pair* make pair (int a, int Db);

#endif // PAIR H
- - #endif // UTIL H
" y _ — - J

pair.h util.h

YA/ UNIVERSITY of WASHINGTON

LO6: C Details

CSE333, Spring 2020

Other Preprocessor Tricks

+ A way to deal with “magic constants”

int globalbuffer[1000];

vold ecircalc(float rad,
float* circumf,
float* area) {

*circumf = rad * 2.0 * 3.1415;
*area = rad * 3.1415 * 3.1415;

(#define BUFSIZE 1000
#define PI 3.14159265359

int globalbuffer [BUFSIZE];

void ecircalc(float rad,
float* circumf,
float* area) {
*circumf = rad * 2.0 * PI;
*area = rad * PI * PI;

Bad code
(littered with magic constants)

\}

J

Better code

YA/ UNIVERSITY of WASHINGTON

Macros

LO6: C Details

CSE333, Spring 2020

% You can pass arguments to macros

[(#define ODD(x) ((x) % 2
void foo () {

1f (ODD(5))
printf ("5 is odd!\n");

Cpp
--'»

+ Beware of operator precedence issues!

= Use parentheses

[4define ODD(x) ((x) % 2
#define WEIRD(x) X

o\°
N

ODD (5 + 1)

WEIRD (5 + 1);

.

-EEZEL

4)
void foo () {
if (((5) 5 2 !'=0))
printf ("5 is odd!\n");
\} J
4)

((5 + 1) % 2 !'=0);
5+ 1 % 2 = 0;
. J

10

YA/ UNIVERSITY of WASHINGTON

LO6: C Details

Conditional Compilation

+ You can change what gets compiled

CSE333, Spring 2020

" |n this example, #define TRACE before #ifdef toinclude
debug printfsin compiled code

(4ifdef TRACE

#fdefine EXIT (
#else

)

#fdefine EXIT (

#fendif

// print n

void pr(int n
ENTER ("pr") ;
printf ("\n
EXIT ("pr") ;

#define ENTER(f) printf ("Entering %s\n", £f);

f) printf("Exiting %s\n", f);

#define ENTER(f)

f)

) |

sd\n", n);

_/

ifdef.c

11

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Defining Symbols

+ Besides #definesin the code, preprocessor values can
be given as part of the gcc command:

[bash$ gcc -Wall -g -DTRACE -o i1fdef 1fdef.c]

+ assert can be controlled the same way — defining NDEBUG
causes assert to expand to “empty”

" |t'samacro—see assert.h

[bash$ gcc —-Wall -g -DNDEBUG -o faster useassert.c]

12

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Lecture Outline

+ Header Guards and Preprocessor Tricks
+ Visibility of Symbols

" extern, static

14

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Namespace Problem

+ If we define a global variable named “counter” in one C
file, is it visible in a different C file in the same program?

= Yes, if you use external linkage
- The name “counter” refers to the same variable in both files
- The variable is defined in one file and declared in the other(s)

- When the program is linked, the symbol resolves to one location

= No, if you use internal linkage

« The name “counter” refers to a different variable in each file
- The variable must be defined in each file

- When the program is linked, the symbols resolve to two locations

15

YA/ UNIVERSITY of WASHINGTON

External Linkage

LO6: C Details

+» extern makes a declaration of something externally-

visible

(#include <stdio.h>

// A global variable, defined and
// initialized here in foo.c.

// It has external linkage by

// default.

int counter = 1;

int main(int argc, char** argv) {
printf ("%d\n", counter);
bar () ;
printf ("%d\n",
return O;

counter) ;

foo.c

CSE333, Spring 2020

16

(#include <stdio.h> B
// "counter" is defined and
// initialized in foo.c.
// Here, we declare 1it, and
// specify external linkage
// by using the extern specifier.
extern int counter;
void bar () {
counter++;
printf (" (b) : counter = %d\n",
counter) ;
J y,
bar.c

YA/ UNIVERSITY of WASHINGTON

LO6: C Details

CSE333, Spring 2020

Internal Linkage

« static (inthe global context) restricts a definition to

visibility within that file

(#include <stdio.h>

// A global variable, defined and
// initialized here in foo.c.

// We force internal linkage by
// using the static specifier.
static int counter = 1;

int main(int argc,
printf ("%d\n",
bar () ;
printf ("%d\n",
return O;

char** argv) {
counter) ;

counter) ;

foo.c

(#include <stdio.h> b
// A global variable, defined and
// initialized here in bar.c.

// We force internal linkage by
// using the static specifier.
static int counter = 100;
void bar () {
counter++;
printf (" (b) : counter = %d\n",
counter) ;
}
. y,

bar.c

17

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Function Visibility

(// By using the static specifier, we are indicating h
// that foo() should have internal linkage. Other
// .c files cannot see or invoke foo().
static int foo(int x) {
return x*3 + 1;
}
// Bar is "extern" by default. Thus, other .c files
// could declare our bar () and invoke 1it.
int bar(int x) {
return 2*foo (x);
bar.c L))
(#include <stdio.h> A
extern int bar(int x); // "extern" is default, usually omit
int main(int argc, char** argv) {
printf ("%d\n", bar(5));
return O;
main.c| !

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Linkage Issues

+ Every global (variables and functions) is extern by
default

= Unless you add the st at ic specifier, if some other module uses
the same name, you’ll end up with a collision!

- Best case: compiler (or linker) error

- Worst case: stomp all over each other

+ It's good practice to:
= Use static to “defend” your globals
- Hide your private stuff!
= Place external declarations in a module’s header file

- Header is the public specification

19

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Additional C Topics

+ Teach yourself!

man pages are your friend!

String library functions in the C standard library
« #include <string.h>
— strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), ...

« #include <stdlib.h>or #include <stdio.h>
— atoi(), atof(), sprint(), sscanf()

How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

unions and what they are good for
enums and what they are good for
Pre- and post-increment/decrement

Harder: the meaning of the “volatile” storage class .

YA/ UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2020

Extra Exercise #1

+ Write a program that:

= Prompts the user to input a string (use fgets ())

- Assume the string is a sequence of whitespace-separated integers
(e.g. "5555 1234 4 5543"M)

= Converts the string into an array of integers

= Converts an array of integers into an array of strings

- Where each element of the string array is the binary representation
of the associated integer

" Prints out the array of strings

22

