CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays

Memory and Arrays
CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:

Ramya Challa Mengqui Chen
Greg Guo Zachary Keyes
Travis McGaha Arjun Singh
Cosmo Wang Yifan Xu

Haoran Yu Velocity Yu

John Depaszthory
CJ Lin

Guramrit Singh
Robin Yang

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Administrivia (1)

« Exercise 0 due this morning*

*but if you're still getting your Linux setup working, finish ex0 and submit it in
the next day or so.

= Sample solution will be posted over the weekend

+ Exercise 1 out today, due Friday morning, 10 am™**

** We'll cut off submissions Saturday mid-day so we can post sample
solutions late Saturday for you to check before ex2 is due on Monday.

= You'll want to check your code style for this and later exercises
using the clint tool distributed with hwO and described there

+ If you don’t have a gradescope account, send a note to
cse333-staff with your name, student id# and uw email
address (xyzzy@uw.edu) so we can get you set up

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Administrivia (2)

+ Office hours: We’ve been scheduling Zoom meetings and
we’re starting now with what we have. See the Canvas
calendar or Canvas/Zoom meeting list for times/days and
Zoom links.
= Probably will be more additions or changes over next several days

= UW-IT figured out how to stop sending email to everyone every
time the Canvas/Zoom schedule changed, so you shouldn’t get
bombarded further. Check the schedule on Canvas for future

additions and changes

= Use the discussion board to report problems or contribute
suggestions

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Administrivia (3)

+ Homework O out later today

= |ogistics and infrastructure for projects
- Gitlab email sent later today when repos created — no action needed

= Demos and setup in section tomorrow — we’re still figuring out
how best to do this, but we will have sections tomorrow. See
Canvas calendar or Canvas/Zoom page for Zoom links

- Updated CSE VM this quarter. Please use the new one or winter one
after running sudo yum update; nothing older.

+ Reference system for grading is CSE lab/attu/current VM
" For both exercises and homework (project) code

" |t’s your job to be sure your solution(s) work on them

- Just because it works on ReallyCoolLinuxDistribution® doesn’t mean it
for sure works on other Linux systems, including ours

YA UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Lecture Outline

«» C’'s Memory Model (refresher)
« Pointers (refresher)

« Arrays

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

OS and Processes

+» The OS lets you run multiple applications at once
= An application runs within an OS “process”

"= The OS timeslices each CPU between runnable processes

- This happens very quickly: ~100 times per second

Process 1 Process 2 Process N

operating system

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Processes and Virtual Memory

: OxFF...FF | Virtual Memor
« The OS gives each process the A Y
illusion of its own private memory
= Called the process’ address space
= Contains the process’ virtual memory, §
visible only to it (via translation) 3
= 264 hytes on a 64-bit machine L Contains code,
o data, libraries,
> stack, etc.
g
o
S
\4
0x00...00

CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays

Loading

+ When the OS loads a program it:

1)
2)

3)

4)

Creates an address space

Inspects the executable file to see
what’s in it

(Lazily) copies regions of the file

into the right place in the address
space

Does any final linking, relocation, or
other needed preparation

OxFF...FF

0x00...00

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Memory Management

« Local variables on the Stack

= Allocated and freed via calling SRS
conventions (push, pop, mov) l
+ Global and static variables in Data 1
= Allocated/freed when the process SIELEE HITEES
starts/exits
< Dynamically-allocated data on the Heap
Heag Static Data
" malloc () torequest; free () to free, Ll
otherwise memory leak Instructions
0x00...00

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Review: The Stack

p
+» Used to store data associated with
function calls Caller
= Compiler-inserted code manages stack Frame
frames for you e T
‘ \
. Return Address
« Stack frame (x86-64) includes: ¥ DP — G %erbr
= Address to return to
" Saved registers Callee Saved Registers
- Based on calling conventions Frame< *
_ Local Variables
" |ocal variables
= Argument build
- Only if > 6 used Arguments 7+
\ Srsp—

10

YA/ UNIVERSITY of WASHINGTON

Stack in Action

A/

A/

LO2: Memory, Arrays

CSE333, Spring 2020

Note: arrow points to next instruction to
be executed (like in gdb).

stack.c

/@include <stdint.h>

int £(int,
int g(int);

int) ;

int main(int argc,

int nl = £(3,-5);
nl = g(nl);

}

int £(int pl, 1nt p2)

int x;
int a[3];

X:

g(al2]);

return x;

}

int g(int param) {

return param * 2;
W

char** argv)

{

{

~N

11

YA/ UNIVERSITY of WASHINGTON

Stack in Action

LO2: Memory, Arrays

CSE333, Spring 2020

Note: arrow points to next instruction to
be executed (like in gdb).

stack.c

/@include <stdint.h>

int £(int,
int g(int);

int) ;

int main(int argc,

int nl = £(3,-5);
nl = g(nl);

}

int £(int pl, 1nt p2)

int x;
int a[3];

X:

g(al2]);

return x;

int g(int param) {
return param * 2;
\

char** argv)

{

{

~N

12

YA/ UNIVERSITY of WASHINGTON

Stack in Action

A/

LO2: Memory, Arrays

CSE333, Spring 2020

Note: arrow points to next instruction to

be executed (like in gdb).

stack.c

/@include <stdint.h>

int £(int, int);
int g(int);

int nl = £(3,-5);
nl = g(nl);
}

int £(int pl, 1nt p2)
int x;
int a[3];

x = gl(al2]);
return x;

int g(int param) {
return param * 2;
\

int main(int argc, char** argv)

{

{

~N

13

YA/ UNIVERSITY of WASHINGTON

Stack in Action

LO2: Memory, Arrays

CSE333, Spring 2020

Note: arrow points to next instruction to
be executed (like in gdb).

stack.c

/%include <stdint.h>

int £(int,
int g(int);

int) ;

int main(int argc,

int nl = £(3,-5);
nl = g(nl);
=P | }
int £(int pl, 1nt p2)
int x;

int a[3];

X:

g(al2]);
return x;

int g(int param) {
return param * 2;
\

char** argv)

{

{

~N

14

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays

Lecture Outline

« C's Memory Model (refresher)
+ Pointers (refresher)

« Arrays

CSE333, Spring 2020

15

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Pointers

« Variables that store addresses

" |t points to somewhere in the process’ virtual address space

= & foo produces the virtual address of foo

+ Generic definition:(t ype* name; |or(type *name; |

= Recommended: do not define multiple pointers on same line:
[iﬂt “pl, p2;] not the same as[int xpl, *p2;]

" |nstead, use: | int *pl;
int *p2;

+ Dereference a pointer using the unary * operator

= Access the memory referred to by a pointer

16

YA UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Pointer Example

pointy.c (“#include <stdio.h> N\
#include <stdint.h>

int main(int argc, char** argv) {
int x = 351;
int* p; // p 1s a pointer to a int

; // p now contains the addr of x
("&x 1is Sp\n", &x);
(" p is Sp\n", p);
(" x is %d\n", Xx);

*p = 333; // change value of x
(" x is %d\n", x);

return 0;

17

YA/ UNIVERSITY of WASHINGTON

Something Curious

LO2: Memory, Arrays

CSE333, Spring 2020

+» What happens if we run pointy. c several times?

[bash$ gcc —Wall —-std=cll -o pointy pointy.c]

Run 1:

Run 3:

(bash$
&x 1S
p 1is
X 18
X 18
_

./pointy
Ox7ffff9e28524
Ox7fffr9e28524
351

333

(bash$
&x 18
p 1is
X 18
X 18

.

./pointy
Ox7fffe7bl4644
Ox7fffe/bl4644
351

333

Run 2:

Run 4:

(bash$
&x 1S
p 1is
X 1S
X 18
_

./pointy
Ox7fffe847be34
Ox7fffe847be34
351

333

(bash$
&x 18
p 1is
X 18
X 18

1\

./pointy
Ox7ffrfff0dfeb54
Ox7fffrr0dreb4
351

333

18

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Address Space Layout Randomization

. OXFF...FF
« Linux uses address space layout _

randomization (ASLR) for added SIS
security l
= Randomizes: 1
- Base of stack Shared Libraries
- Shared library (mmap) location 1

= Makes Stack-based buffer overflow

attacks tougher Heap
Read/Write Segment
= Makes debugging tougher .data, .bss
= Can be disabled (gdb does this by Read-Only Segment

default); Google if curious -text, .rodata

0x00...00

19

YA UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Lecture Outline

« C's Memory Model (refresher)
« Pointers (refresher)

« Arrays

20

YA/ UNIVERSITY of WASHINGTON

LO2: Memory, Arrays

Arrays

+ Definition: [type name [size]]

= Allocates size*sizeof (type) bytes of contiguous memory

= Normal usage is a compile-time constant for size
(e.g. int scores[175];)

= |nitially, array values are “garbage”

+ Size of an array

" Not stored anywhere — array does not know its own size!
- sizeof (array) only works in variable scope of array definition

= Recent versions of C (but not C++) allow for variable-length arrays
- Uncommon and can be considered bad practice [we won’t use]

int n = 175;
int scores[n]; // OK in C99

21

CSE333, Spring 2020

LO2: Memory, Arrays CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON

Using Arrays

@ Initialization:[type name [size] = {valO,...,valN};J

= {} initialization can only be used at time of definition

= |f no size supplied, infers from length of array initializer

+ Array name used as identifier for “collection of data”
" name [1index] specifies an element of the array and can be
used as an assignment target or as a value in an expression
= Array name (by itself) produces the address of the start of the

array
- Cannot be assigned to / changed

=N 250 3,86, TR RS

int primes
primes|[3]

[6]
primes[100] =

0; // memory smash!
23

YA/ UNIVERSITY of WASHINGTON

LO2: Memory, Arrays

Multi-dimensional Arrays

« Generic 2D format:

CSE333, Spring 2020

type namel[rows] [cols] = {{values},.., {values}};

= Still allocates a single, contiguous chunk of memory

= Cis row-major

(
double grid[2][3];

int matrix[3][5] = {
{o, 1, 2, 3, 4},
{o, 2, 4, o6, 8},
{1, 3, 5, 7, 9}

\};

// a 2-row, 3-column array of doubles

// a 3-row, 5-column array of ints

~

J

= 2-D arrays normally only useful if size known in advance.
Otherwise use dynamically-allocated data and pointers (later)

24

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays

Arrays as Parameters

« It’s tricky to use arrays as parameters

CSE333, Spring 2020

" What happens when you use an array name as an argument?

= Arrays do not know their own size

(int sumAll (int a[]); // prototype

int main(int argc, char** argv) {
int numbers[] = {9, 8, 1, 9, 5};
int sum = sumAll (numbers) ;
return 0;

}

int sumAll (int al[]) {
int i, sum = 0;
for (1 = 0; 1 < ...?272°%

25

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Solution 1: Declare Array Size

flnt sumAll (int al[5]); // prototype)

int main(int argc, char** argv) {
int numbers[] = {9, 8, 1, 9, 5};
int sum = sumAll (numbers) ;
("sum is: %d\n", sum);
return O;

}

int sumAll (int a[5]) {

int i, sum = 0;

for (1 = 0; 1 < 5; 1i++) {
sum += ali];

}

return sum;
}
_ _J

+ Problem: loss of generality/flexibility

26

YA/ UNIVERSITY of WASHINGTON

LO2: Memory, Arrays

Solution 2: Pass Size as Parameter

flnt sumAll (int a[], int size);

int main(int argc, char** argv)

int numbers[] = {9, 8, 1, 9,
int sum = sumAll (numbers, 5);
("sum is: %d\n", sum);

return 0;

}

int sumAll (int afl],
int i, sum = 0;
for (1 = 0; 1 < size;
sum += ali];
}

return sum;

int size) {

i++) |

\}

~

// prototype

{
5};

arraysum.c

= Standard idiom in C programs

CSE333, Spring 2020

27

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays

Returning an Array

+ Local variables, including arrays, are allocated on the
Stack
" They “disappear” when a function returns!

= Can’t safely return local arrays from functions

- Can’t return an array as a return value — why not?

rlnt* copyArray (int src[], 1int size) {)
int i, dst[size]; // OK in C99
for (1 = 0; 1 < size; i++) {

dst[i] = srcl[i];
}
return dst; // no compiler error, but wrong!
}
_ J

buggy copyarray.c

CSE333, Spring 2020

28

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Solution: Output Parameter

+ Create the “returned” array in the caller

= Pass it as an output parameter to copyarray ()

- A pointer parameter that allows the called function to store values
that the caller can use

= Works because arrays are “passed” as pointers

(§oid copyArray (int src[], int dst[], int size) {)
int 1i;
for (1 = 0; 1 < size; i++) {
dst[i] = src[i];
}
< y

copyarray.c

29

YA UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Output Parameters

« QOutput parameters are common in library functions

" long int strtol (char* str, char** endptr,
int base);

" 1nt sscanf (char* str, char* format, ...);

rint num, 1; i\
char* pEnd, strl = "333 rocks";
char str2[10];

// converts "333 rocks" into long -- pEnd is conversion end
num = (int) strtol(strl, &pEnd, 10);

// reads string into arguments based on format string
\?um = sscanf ("3 blind mice", "%d %s", &i, str2);

outparam.c

30

CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays

Parameters: reference vs. value

+ There are two fundamental parameter-passing schemes in
programming languages

+ Call-by-value
= Parameter is a local variable initialized with a copy of the calling

argument when the function is called; manipulating the
parameter only changes the copy, not the calling argument

= C, Java, C++ (most things)

+» Call-by-reference

= Parameter is an alias for the supplied argument; manipulating the
parameter manipulates the calling argument

= C++ references (we’ll see these later)

31

YA/ UNIVERSITY of WASHINGTON

LO2: Memory, Arrays

So what’s the story for arrays?

+ Is it call-by-value or call-by-reference?

+» Technical answer: a T[] array parameter is “promoted” to

a pointer of type T*, and the pointer is passed by value

= So it acts like a call-by-reference array (if callee changes the array

parameter elements it changes the caller’s array)

= But it’s really a call-by-value pointer (the callee can change the
pointer parameter to point to something else(!))

(§oid copyArray (int src[], int dst[], 1int size) {
int 1i;
dst = src; // evil!
for (1 = 0; 1 < size; i++) {
dst[i] = srcli]; // coples source array to itself!

}

Q

CSE333, Spring 2020

32

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Extra Exercises

« Some lectures contain “Extra Exercise” slides

= Extra practice for you to do on your own without the pressure of
being graded

"= You may use libraries and helper functions as needed

- Early ones may require reviewing 351 material or looking at
documentation for things we haven’t discussed in 333 yet

= Always good to provide test cases inmain ()

+ Solutions for these exercises will be posted on the course
website

"= You will get the most benefit from implementing your own
solution before looking at the provided one

33

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Extra Exercise #1

+ Write a function that:
= Accepts an array of 32-bit unsigned integers and a length
= Reverses the elements of the array in place

= Returns nothing (void)

34

YA/ UNIVERSITY of WASHINGTON L02: Memory, Arrays CSE333, Spring 2020

Extra Exercise #2

« Worite a function that:
" Accepts a string as a parameter

® Returns:

- The first white-space separated word in the string as a newly-
allocated string

« AND the size of that word

= (probably need to wait until we look at malloc/free later)

35

