
CSE333, Autumn 2020L25: Concurrency Intro

Introduction to Concurrency
CSE 333 Autumn 2020

Instructor: Hal Perkins

Teaching Assistants:
Rehaan Bhimani Ramya Challa Eric Chan
Mengqi Chen Ian Hsiao Pat Kosakanchit
Arjun Singh Guramrit Singh Sylvia Wang
Yifan Xu Robin Yang Velocity Yu

CSE333, Autumn 2020L25: Concurrency Intro

Administrivia

v Sections tomorrow: pthread tutorial
§ pthread exercise posted after sections, due Monday morning
§ Much more about concurrency in this and next several lectures

• But will not repeat section material

v hw4 due next Thursday night
§ Yes, can still use up to 2 late days on hw4 (if you haven’t used

them up already – check!)

2

CSE333, Autumn 2020L25: Concurrency Intro

Outline

v Understanding Concurrency
§ Why is it useful
§ Why is it hard

v Concurrent Programming Styles
§ Threads vs. processes
§ Asynchronous or non-blocking I/O

• “Event-driven programming”

3

CSE333, Autumn 2020L25: Concurrency Intro

Building a Web Search Engine

v We need:
§ A web index

• A map from <word> to <list of documents containing the word>
• This is probably sharded over multiple files

§ A query processor
• Accepts a query composed of multiple words
• Looks up each word in the index
• Merges the result from each word into an overall result set

4

CSE333, Autumn 2020L25: Concurrency Intro

Web Search Architecture

5

query
processor

client

client

client

client

client

index
file

index
file

index
file

CSE333, Autumn 2020L25: Concurrency Intro

Sequential Implementation

v Pseudocode for sequential query processor:

6

doclist Lookup(string word) {
bucket = hash(word);
hitlist = file.read(bucket);
foreach hit in hitlist {

doclist.append(file.read(hit));
}
return doclist;

}

main() {
while (1) {

string query_words[] = GetNextQuery();
results = Lookup(query_words[0]);
foreach word in query[1..n] {

results = results.intersect(Lookup(word));
}
Display(results);

}
}

CSE333, Autumn 2020L25: Concurrency Intro

Execution Timeline: a Multi-Word Query

7

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CSE333, Autumn 2020L25: Concurrency Intro

What About I/O-caused Latency?

v Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

8

CSE333, Autumn 2020L25: Concurrency Intro

Execution Timeline: To Scale

9

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

CSE333, Autumn 2020L25: Concurrency Intro

Sequential Queries – Simplified

10

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

CSE333, Autumn 2020L25: Concurrency Intro

Sequential Queries: To Scale

11

I
/
O

1
.
b

I
/
O

1
.
d

time

query 2

query 1

I
/
O

1
.
b

I
/
O

1
.
d

I
/
O

1
.
b

I
/
O

1
.
d

query 3

CSE333, Autumn 2020L25: Concurrency Intro

Multiple Clients – Simplified

12

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

CSE333, Autumn 2020L25: Concurrency Intro

Sequential Can Be Inefficient

v Only one query is being processed at a time
§ All other queries queue up behind the first one

v The CPU is idle most of the time
§ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow

v At most one I/O operation is in flight at a time
§ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

13

CSE333, Autumn 2020L25: Concurrency Intro

Concurrency

v A version of the program that executes multiple tasks
simultaneously
§ Example: Our web server could execute multiple queries at the

same time
• While one is waiting for I/O, another can be executing on the CPU

§ Example: Execute queries one at a time, but issue I/O requests
against different files/disks simultaneously
• Could read from several index files at once, processing the I/O results

as they arrive

v Concurrency != parallelism
§ Parallelism is executing multiple CPU instructions simultaneously

14

CSE333, Autumn 2020L25: Concurrency Intro

A Concurrent Implementation

v Use multiple threads or processes
§ As a query arrives, fork a new thread (or process) to handle it

• The thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

• The thread uses blocking I/O; the thread alternates between
consuming CPU cycles and blocking on I/O

§ The OS context switches between threads/processes
• While one is blocked on I/O, another can use the CPU
• Multiple threads’ I/O requests can be issued at once

15

CSE333, Autumn 2020L25: Concurrency Intro

Introducing Threads

v Separate the concept of a process from an individual
“thread of control”
§ Usually called a thread (or a lightweight process), this is a

sequential execution stream within a process

v In most modern OS’s:
§ Process: address space, OS resources/process attributes
§ Thread: stack, stack pointer, program counter, registers
§ Threads are the unit of scheduling and processes are their

containers; every process has at least one thread running in it
16

thread

CSE333, Autumn 2020L25: Concurrency Intro

Multithreaded Pseudocode

17

doclist Lookup(string word) {
bucket = hash(word);
hitlist = file.read(bucket);
foreach hit in hitlist

doclist.append(file.read(hit));
return doclist;

}

ProcessQuery() {
results = Lookup(query_words[0]);
foreach word in query[1..n]

results = results.intersect(Lookup(word));
Display(results);

}

main() {
while (1) {

string query_words[] = GetNextQuery();
ForkThread(ProcessQuery());

}
}

CSE333, Autumn 2020L25: Concurrency Intro

Multithreaded Queries – Simplified

18

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

CSE333, Autumn 2020L25: Concurrency Intro

Why Threads?

v Advantages:
§ You (mostly) write sequential-looking code
§ Threads can run in parallel if you have multiple CPUs/cores

v Disadvantages:
§ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

§ Threads can introduce overhead
• Lock contention, context switch overhead, and other issues

§ Need language support for threads

19

CSE333, Autumn 2020L25: Concurrency Intro

Alternative: Processes

v What if we forked processes instead of threads?

v Advantages:
§ No shared memory between processes
§ No need for language support; OS provides “fork”

v Disadvantages:
§ More overhead than threads during creation and context

switching
§ Cannot easily share memory between processes – typically

communicate through the file system

20

CSE333, Autumn 2020L25: Concurrency Intro

Threads vs. Processes

21

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CSE333, Autumn 2020L25: Concurrency Intro

Threads vs. Processes

22

OS kernel [protected]

Stackchild

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CSE333, Autumn 2020L25: Concurrency Intro

Alternate: Asynchronous I/O

v Use asynchronous or non-blocking I/O

v Your program begins processing a query
§ When your program needs to read data to make further progress,

it registers interest in the data with the OS and then switches to a
different query

§ The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

§ When data becomes available, the OS lets your program know

v Your program (almost never) blocks on I/O

23

CSE333, Autumn 2020L25: Concurrency Intro

Event-Driven Programming

v Your program is structured as an event-loop

24

void dispatch(task, event) {
switch (task.state) {

case READING_FROM_CONSOLE:
query_words = event.data;
async_read(index, query_words[0]);
task.state = READING_FROM_INDEX;
return;

case READING_FROM_INDEX:
...

}
}

while (1) {
event = OS.GetNextEvent();
task = lookup(event);
dispatch(task, event);

}

CSE333, Autumn 2020L25: Concurrency Intro

Asynchronous, Event-Driven

25

I
/
O

1
.
b

I
/
O

2
.
b

I
/
O

3
.
b

time

I
/
O

2
.
d

C
P
U

3
.
a

C
P
U

1
.
a

C
P
U

2
.
a

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

2
.
c

I
/
O

3
.
d

C
P
U

1
.
e

C
P
U

2
.
e

C
P
U

3
.
c

C
P
U

3
.
e

CSE333, Autumn 2020L25: Concurrency Intro

Non-blocking vs. Asynchronous

v Reading from the network can truly block your program
§ Remote computer may wait arbitrarily long before sending data

v Non-blocking I/O (network, console)
§ Your program enables non-blocking I/O on its file descriptors
§ Your program issues read() and write() system calls

• If the read/write would block, the system call returns immediately

§ Program can ask the OS which file descriptors are
readable/writeable
• Program can choose to block while no file descriptors are ready

26

CSE333, Autumn 2020L25: Concurrency Intro

Non-blocking vs. Asynchronous

v Asynchronous I/O (disk)
§ Program tells the OS to being reading/writing

• The “begin_read” or “begin_write” returns immediately
• When the I/O completes, OS delivers an event to the program

v According to the Linux specification, the disk never blocks
your program (just delays it)
§ Asynchronous I/O is primarily used to hide disk latency
§ Asynchronous I/O system calls are messy and complicated L

27

CSE333, Autumn 2020L25: Concurrency Intro

Why Events?

v Advantages:
§ Don’t have to worry about locks and race conditions
§ For some kinds of programs, especially GUIs, leads to a very

simple and intuitive program structure
• One event handler for each UI event

v Disadvantages:
§ Can lead to very complex structure for programs that do lots of

disk and network I/O
• Sequential code gets broken up into a jumble of small event handlers
• You have to package up all task state between handlers

28

CSE333, Autumn 2020L25: Concurrency Intro

One Way to Think About It

v Threaded code:
§ Each thread executes its task sequentially, and per-task state is

naturally stored in the thread’s stack
§ OS and thread scheduler switch between threads for you

v Event-driven code:
§ *You* are the scheduler
§ You have to bundle up task state into continuations (data

structures describing what-to-do-next); tasks do not have their
own stacks

29

