CSE333, Autumn 2020

YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules

Data Structures and Modules

CSE 333 Autumn 2020

Instructor: Hal Perkins

Teaching Assistants:

Rehaan Bhimani Ramya Challa
Mengqi Chen lan Hsiao
Arjun Singh Guramrit Singh

Yifan Xu Robin Yang

Eric Chan

Pat Kosakanchit
Sylvia Wang
Velocity Yu



YA/ UNIVERSITY of WASHINGTON

LO5: Data Structures, Modules

Administrivia

+ Exercise 3 was due this morning
% There is no exercise 4 this quarter!!l ©

+ Exercise 5 is based on code from yesterday’s sections
= Due Monday morning, out yesterday afternoon

= Will take a bit longer than usual — suggest not leaving it until
Sunday night. © ©



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Administrivia

J
0’0

J
0’0

More about hwl before the weekend
" You may not modify interfaces (. h files)
= But do read the interfaces while you’re writing code(!)

= Suggestion: look at example program {11l]|ht}.c fortypical
usage of lists and hash tables

= Suggestion: have more fun, less anxiety: pace yourself and make steady
progress; don’t leave it until the last minute!

Remember: the only supported systems for the class are the

Allen School Linux machines (workstations, attus, home VM —

Centos 8 + gcc 9). You should be working on those systems

and the projects you build must work there.

= We do not have the cycles to try to support other Unix-like things or
chase bugs due to configuration or software differences (including file
transfers to/from Windows systems and editing in native Windows
environments)



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

More Administrivia

Gitlab repo usage
= Commit things regularly

Newly completed units of work / milestones / project parts

End-of-day when wrapping up on one computer so you can later pull
changes to a different machine

And: for this remote quarter, before “visiting” office hours to make it
easier for you and TA to browse code

etc.

= Provides backup: protection against lost files and ability to go back in
time to retrieve old versions before they got messed up ©

" There shouldn’t be one massive commit the day hw is due
= But: use it properly

Don’t push .0 and executable files or other build products
— Clutter, makes it harder to do clean rebuilds, not portable, etc.

Don’t use git as a file transfer program (don’t edit on one machine,
commit/push/pull to another, compile, and repeat every few minutes)



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Communications

+~ Please use the discussion board for general questions, helping
each other out, checking answers/postings from others, etc.

+ We’'ve asked that if you need to contact the staff, please send
email to cse333-staff@cs

= But, for some reason, this quarter we’re seeing lots of private messages
sent via the discussion board for the first time

" These are harder to track/follow-up/be-sure-resolved, so...

= We're going to disable private postings on the discussion board right
after class. Please use email for private messages and we’ll be better
able to help everyone. Use Gradescope for exercise grading requests.

= And yeah, it’s really annoying that different classes all seem to do things
in different ways. Will try to fix eventually, but it’ll take time...



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Lecture Outline

+» Implementing Data Structures in C

« Multi-file C Programs

" C Preprocessor Intro



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Simple Linked List in C

+» Each node in a linear, singly-linked list contains:
= Some element as its payload

= A pointer to the next node in the linked list

- This pointer is NULL (or some other indicator) in the last node in the
list

Element Z C%ID ElementY Cél:‘\./ ElementX | (@

A

head

o1




YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Linked List Node

+ Let’s represent a linked list node with a struct

" For now, assume each elementisan int

(%include <stdio.h> ﬂ\

typedef struct node st {
int element;

struct node st* next; element next
} Node; nl 1
int main(int argc, char** argv) {
Node nl, n2; element next
n2 2 1)
nl.element = 1;
nl.next = &n2;
n2.element = 2;

n2.next = NULL;
return 0;

\U J
manual_list.c 8




YA/ UNIVERSITY of WASHINGTON

Push Onto List

LO5: Data Structures, Modules

rtypedef struct node st {
int element;
struct node st* next;
} Node;

Node* Push (Node* head, int e)

return n;

int main(int argc,

Node* 1list NULL;

memp list = Push(list, 1);
list = Push(list, 2);
return 0O;
k}

{

Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false
n->element = e;
n->next = head;

char** argv) {

push_list.c

CSE333, Autumn 2020

Arrow points to
next instruction.

(main) List| @




YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main)list ®
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head| @
mep Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 1
n->element = e;
n->next = head;
return n; (PUSh) =
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1);
list = Push(list, 2);
return 0O;
}
. Y,

push_list.c

10



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main)list ®
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head| @
Node* n = (Node*) malloc (sizeof (Node)) ;
w==fp assert(n != NULL); // crashes if false (Push) el 1
n->element = e;
n->next = head;
return n; (PUSh) =
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1);
list = Push(list, 2);
return 0O;
}
. Y,

push_list.c

11



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main)list ®
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head| @
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 1
m—fp n->element = e;
n->next = head;
return n; (PUSh) =
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1);
list = Push(list, 2);
return 0O;
}
. Y,

push_list.c

12



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main)list ®
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head| @
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 1
n->element = e;
==ap n->next = head;
return n; (PUSh) =
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1
list = Push(list, 2);
return 0O;
}
. Y,

push_list.c

13



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main)list ®
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head| @
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 1
n->element = e;
n->next = head;
mea return n; (Push) &
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1 @
list = Push(list, 2);
return 0O;
}
. Y,

push_list.c

14



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; Unmn)list
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 1
n->element = e;
n->next = head;
mea return n; (Push) &
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1 @
mealp Jist = Push(list, 2);
return 0O;
x} J

push_list.c

15



YA/ UNIVERSITY of WASHINGTON

Push Onto List

LO5: Data Structures, Modules

rtypedef struct node st {
int element;

struct node st* next;
} Node;

Node* Push (Node* head,

mep Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false
n->element = e;
n->next = head;

return n;

int main(int argc, char** argv)
Node* 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return O;

}
.

int e) {

{

push_list.c

CSE333, Autumn 2020

Arrow points to
next instruction.

(main) 1ist

(Push) head

(Push) el 2

(Push)

element next
1 1)

element next

16



YA/ UNIVERSITY of WASHINGTON

LO5: Data Structures, Modules

Push Onto List

rtypedef struct node st
int element;

struct node st* next;
} Node;

Node* Push (Node* head,

Node* n = (Node¥*)
m=fp assert(n != NULL);

n->element = e;

n->next = head;

return n;

int main(int argc,

Node* list = NULL;
list = Push(list, 1);
list = Push(list, 2);

return 0;

}
.

{

int e) {

malloc(sizeof (Node)) ;
// crashes 1f false

char** argv) {

push_list.c

CSE333, Autumn 2020

Arrow points to
next instruction.

(main) 1ist

(Push) head

(Push) el 2

(Push)

element next
1 1)
element next

17



YA/ UNIVERSITY of WASHINGTON

LO5: Data Structures, Modules

Push Onto List

rtypedef struct node st
int element;

struct node st* next;
} Node;

Node* Push (Node* head,

Node* n = (Node*)

assert(n != NULL);
mmfps p->clement = e;

n->next = head;

return n;

int main(int argc,

Node* list = NULL;
list = Push(list, 1);
list = Push(list, 2);

return 0;

}
.

{

int e) {

malloc(sizeof (Node)) ;
// crashes 1f false

char** argv) {

push_list.c

CSE333, Autumn 2020

Arrow points to
next instruction.

(main) 1ist

(Push) head

(Push) e

(Push)

element next
1 1)
element next

18



YA/ UNIVERSITY of WASHINGTON

LO5: Data Structures, Modules

Push Onto List

rtypedef struct node st
int element;

struct node st* next;
} Node;

Node* Push (Node* head,

Node* n = (Node*)

assert(n != NULL);

n->element = e;
==ap n->next = head;

return n;

int main(int argc,

Node* list = NULL;
list = Push(list, 1);
list = Push(list, 2);

return 0;

}
.

{

int e) {

malloc(sizeof (Node)) ;
// crashes 1f false

char** argv) {

push_list.c

CSE333, Autumn 2020

Arrow points to
next instruction.

(main) 1ist

(Push) head

(Push) e

(Push)

element next
1 1)

element next
2

19



YA/ UNIVERSITY of WASHINGTON

LO5: Data Structures, Modules

Push Onto List

rtypedef struct node st
int element;

struct node st* next;
} Node;

Node* Push (Node* head,

Node* n = (Node*)
assert(n != NULL);
n->element = e;
n->next = head;

L

return n;

}

int main(int argc,

Node* list = NULL;
list = Push(list, 1);
list = Push(list, 2);

return 0;

}
.

{

int e) {

malloc(sizeof (Node)) ;
// crashes 1f false

char** argv) {

push_list.c

CSE333, Autumn 2020

Arrow points to
next instruction.

(main) 1ist

(Push) head

(Push) e

(Push)

element next
1 1)

element next
2

20



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Arrow points to

Push Onto List next instruction.

rtypedef struct node st {
int element;
struct node st* next;
} Node;

(main) 1ist

Node* Push (Node* head, int e) { (Push) head
Node* n = (Node*) malloc(sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 2
n->element = e;

n->next = head; N
mea return n; (Push)

}

int main(int argc, char** argv) {
Node* 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);

mmalp return 0;

}

. J

push_list.c

element next
1 1)

element next
2

21



YA/ UNIVERSITY of WASHINGTON

Push Onto List

LO5: Data Structures, Modules

rtypedef struct node st {
int element;
struct node st* next;
} Node;

Node* Push (Node* head,

return nj;

int main(int argc, char** argv)
Node* 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return O;

— )

int e) {

Node* n = (Node*) malloc(sizeof (Node)) ;
assert(n != NULL); // crashes if false
n->element = e;
n->next = head;

{

push_list.c

CSE333, Autumn 2020

Arrow points to
next instruction.

A (benign) memory leak!
Try running with Valgrind:

bash$ gcc -Wall -g -o
push list push list.c

bash$ valgrind --leak-
check=full ./push list

element next
1 1)

element next
2

22



YA/ UNIVERSITY of WASHINGTON

A Generic Linked List

+ Let’s generalize the linked list element type

LO5: Data Structures, Modules

CSE333, Autumn 2020

= Let customer decide type (instead of always int)

" |dea: let them use a generic pointer (i.e. a void*)

rtypedef struct node st {
void* element;
struct node st* next;
} Node;

Node* Push (Node* head, wvoid* e)

return n;

{

Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false
n->element = e;
n->next = head;

p

element

next

element

next

=

23



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Using a Generic Linked List

+ Type casting needed to deal with void* (raw address)
= Before pushing, need to convert to void*

= Convert back to data type when accessing

rtypedef struct node st {
volid* element;
struct node st* next;
} Node;

Node* Push (Node* head, void* e); // assume last slide’s code

int main(int argc, char** argv) {
char* hello = "Hi there!";
char* goodbye = "Bye bye.";
Node* 1list = NULL;

list = Push(list, (void¥*) hello);

list = Push(list, (wvoid¥*) goodbye) ;

printf ("payload: '%$s'\n", (char*) ((list->next)->element) );
return 0O;

} manual_list_void.cJ

24




YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Resulting Memory Diagram

(main) list (main) goodbye (main) hello

%
ﬁ

1

element| C b|lvy] e \O
next

element CI tlhlelx|le] ! [|\O
next| @

25



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Lecture Outline

+ Implementing Data Structures in C

+ Multi-file C Programs

" CPreprocessor Intro

26



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Multi-File C Programs

« Let’s create a linked list module

= A module is a self-contained piece of an overall program
- Has externally visible functions that customers can invoke

- Has externally visible t ypedefs, and perhaps global variables, that
customers can use

- May have internal functions, t ypede£s, or global variables that
customers should not look at

= The module’s interface is its set of public functions, t ypedef£s,
and global variables

27



W UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Modularity

+ The degree to which components of a system can be
separated and recombined
= “Loose coupling” and “separation of concerns”
"= Modules can be developed independently

= Modules can be re-used in different projects

main program

linked
list

28



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules

CSE333, Autumn 2020

C Header Files

+» Header: a Cfile whose only purpose is to be
#include’d
= Generally has a filename . h extension

= Holds the variables, types, and function prototype declarations
that make up the interface to a module

« Main ldea:
" Every name.cisintended to be a module that has a name .h
" name.h declares the interface to that module

" Other modules can use name by #include-ing name.h

- They should assume as little as possible about the implementation in
name.c

29



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

C Module Conventions

+» Most C projects adhere to the following rules:

L)

= _h files only contain declarations, never definitions

= _ c files never contain prototype declarations for functions that
are intended to be exported through the module interface

- Those function prototype declarations belong in the . h file
" NEVER #includea .cfile—only #include .h files

" #include all of headers you reference, even if another header
(accidentally or not) includes some of them

= Any . c file with an associated . h file should be able to be
compiled into a . o file

- The . c file should #include the .h file; the compiler will check

definitions and declarations for consistency
30



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

#include and the C Preprocessor

+ The C preprocessor (cpp) transforms your source code before

the compiler runs —it’s a simple copy-and-replace text
processor(!) with a memory

Input is a C file (text) and output is still a C file (text)

Processes the directives it finds in your code (# directive)

- eg.| #include "11.h" ] is replaced by the post-processed content
of11.h

: e.g.r #define PI 3.1415 ]defines a symbol (a string!) and replaces
later occurrences

- Several others that we’ll see soon...
Run on your behalf by gcc during compilation

Note: #include <foo.h> looks in system (library) directories;
#include "foo.h" looks firstin current directory, then system

31



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

C Preprocessor Example

+» What do you think the preprocessor output will be?

[#deflne BAR 2 + FOO ]

typedef long long int verylong;

cpp_example.h

~

(#define FOO 1
#include "cpp example.h"

int main (int argc, char** argv) {
int x = FOO; // a comment
int y = BAR;
verylong z = FOO + BAR;
return 0O;

\. J

cpp_example.c 32




W UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

C Preprocessor Example

+» We can manually run the preprocessor:
= cpp isthe preprocessor (can also use gcc -E)

= “_P” option suppresses some extra debugging annotations

#define BAR 2 + FOO

typedef long long int verylong;

bash$ cpp -P cpp example.c out.c

Cpp_example'h bash$ cat out.c

~

(#define FOO 1
typedef long long int verylong;
#include "cpp example.h" int main(int argc, char **argv) {

int x = 1;

int y =2 + 1;

verylong z = 1 + 2 + 1;
return 0;

int main(int argc, char** argv) {
int x = FOO; // a comment
int y = BAR;
verylong z = FOO + BAR;
return 0;

\. J

cpp_example.c 33




CSE333, Autumn 2020

YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules

What Is gcc Really Doing?

+ gccis actually a pretty simple program that runs the
actual programs that do the real work. Here’s what gcc

runs to translate foo.c to foo.o (gcc -c foo.c):

G) preprocessor (cpp): 2) the “real” compiler A
COpI.eS input to. output, plain C code —no #\ that translates plain C
carries out actions directives left (can code to machine code
specified by # directives create actual .i file \_ Y,

\(#include, #define, etc.)J with gcc -E; usually
\ ot needed) -

34



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Program Using a Linked List

(#include <stdlib.h> N

#include <assert.h>
#include "11.h"

(#include "11.h" N
Node* Push (Node* head, , ] ,
volds element) | int main(int argc, char** argv) {

* 1 — o
// implementation here todsr lisi UL

) o char* hi = "hello";
g ) char* bye = "goodbye";
ll.c list = Push(list, (void*)hi);
list = Push(list, (void*)bye);
rtypedef struct node st { b
vold* element;
struct node st* next; return 0;
} Node; \} y
Node* Push (Node* head, example_ll_customer.c
. vold* element) ; )
Il.h

35



YA/ UNIVERSITY of WASHINGTON

LO5: Data Structures, Modules CSE333, Autumn 2020

Compiling the Program

L)

bash$
bash$
bash$
bash$

«» Four parts:

1/2) Compile example 11 customer.c into an object file

2/1) Compile 11 . c into an object file

3) Link both object files into an executable

4)  Test, Debug, Rinse, Repeat

gcc —Wall
gcc —Wall
gcc —-g —oO
./example

Payload: 'yo!'

Payload:
Payload: 'hello

bash$ valgrind -leak-check=full ./example 11 customer
Shle

-g —c —o example 11 customer.o example 11 customer.c
-g —¢c —o 1l.0 1ll.c

example 11 customer 1ll.0 example 11 customer.o

11 customer

'goodbye'




YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules

CSE333, Autumn 2020

Where Do the Comments Go?

« If a function is declared in a header file (. h) and defined
ina Cfile(.c):

= The header needs full documentation because it is the public

specification

"= No need to copy/paste the comment into the C file

- Don’t want two copies that can get out of sync

- Recommended to leave “specified in <filename>.h” comment in C file
code to help the reader

37



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Where Do the Comments Go?

+ If a (local) function has its prototype and implementation
in same C file:

" One school of thought: Full comment on the prototype at the top
of the file, no comment (or “declared above”) on code

- 333 project code is like this

= Another school: Prototype is for the compiler and doesn’t need
comment; put the comments with the code to keep them
together
- Not used in 333

38



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules

CSE333, Autumn 2020

Extra Exercise #1

+ Extend the linked list program we covered in class:
= Add a function that returns the number of elements in a list
" Implement a program that builds a list of lists
- j.e. it builds a linked list where each element is a (different) linked list

= Bonus: design and implement a “Pop” function

« Removes an element from the head of the list

- Make sure your linked list code, and customers’ code that uses it,
contains no memory leaks

39



YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules CSE333, Autumn 2020

Extra Exercise #2

+ Implement and test a binary search tree
" https://en.wikipedia.org/wiki/Binary search tree

- Don’t worry about making it balanced

" Implement key insert() and lookup() functions
- Bonus: implement a key delete() function

" Implement it as a C module
- bst.c,bst.h

" Implement test bst.c

- Contains main() and tests out your BST

40


https://en.wikipedia.org/wiki/Binary_search_tree

YA/ UNIVERSITY of WASHINGTON LO5: Data Structures, Modules

CSE333, Autumn 2020

Extra Exercise #3

L)

Implement a Complex number module

complex.c, complex.h

Includes a typedef to define a complex number

- a+ bi, whereaandbare doubles

Includes functions to:

- add, subtract, multiply, and divide complex numbers

Implement a test driverin test complex.c

« Containsmain ()

41



