
CSE333, Autumn 2020L04: The Heap, Structs

The Heap and Structs
CSE 333 Autumn 2020

Instructor: Hal Perkins

Teaching Assistants:
Rehaan Bhimani Ramya Challa Eric Chan
Mengqi Chen Ian Hsiao Pat Kosakanchit
Arjun Singh Guramrit Singh Sylvia Wang
Yifan Xu Robin Yang Velocity Yu

CSE333, Autumn 2020L04: The Heap, Structs

Administrivia

v Yet another exercise, ex3, out today, due Friday morning

v There is no ex4 this quarter! J

v Exercise after that, ex5, will be based on code example
from sections tomorrow, due Monday – it’s a bit on the
long side
§ Section code “handout” for tomorrow will be added to the

calendar later today
• Suggestion: download/print a copy before section so you can refer to

it easily (or share with others on Zoom)

2

CSE333, Autumn 2020L04: The Heap, Structs

More Administrivia

v HW1 due a week from Thursday
§ You should have a decent start by now

• 😱😱😱 if not

§ Be sure to read headers carefully while implementing
• Header files may not be changed, but ok to add local “helper”

functions in .c files when appropriate

§ Use git add/commit/push regularly to save work when you finish
another part of the job
• And also please do this before contacting TA during office hours if you

want help with your code

3

CSE333, Autumn 2020L04: The Heap, Structs

Office Hours

v Schedule is up now and there’s a “How to Zoom Office
Hours” writeup on the course web resources page

v Briefly:
§ TA will be present if meeting is open (no “join before host”)

• But maybe in a breakout room helping someone else
§ No waiting room – when you join, you’ll be in the main room

• Hang out and chat/work with others if TA is in a breakout
§ If more than a couple of people are waiting for help, use link on

resources page to sign up on waiting list queue
• Try to get on the right list depending on if you think your question has

a short or long answer
• Help each other while waiting, and we may handle people with similar

questions together as a group if it makes sense

4

CSE333, Autumn 2020L04: The Heap, Structs

Lecture Outline

v Heap-allocated Memory
§ malloc() and free()
§ Memory leaks

v structs and typedef

5

CSE333, Autumn 2020L04: The Heap, Structs

Memory Allocation So Far

v So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main(int argc, char** argv) {
counter++;
printf("count = %d\n",counter);
return 0;

}

int foo(int a) {
int x = a + 1; // local var
return x;

}

int main(int argc, char** argv) {
int y = foo(10); // local var
printf("y = %d\n",y);
return 0;

}

§ counter is statically-allocated
• Allocated when program is loaded
• Deallocated when program exits

§ a, x, y are automatically-
allocated
• Allocated when function is called
• Deallocated when function returns

6

CSE333, Autumn 2020L04: The Heap, Structs

Dynamic Allocation

v Situations where static and automatic allocation aren’t
sufficient:
§ We need memory that persists across multiple function calls but

not for the whole lifetime of the program
§ We need more memory than can fit on the stack
§ We need memory whose size is not known in advance

// this is pseudo-C code
char* ReadFile(char* filename) {

int size = GetFileSize(filename);
char* buffer = AllocateMem(size);

ReadFileIntoBuffer(filename, buffer);
return buffer;

}

7

CSE333, Autumn 2020L04: The Heap, Structs

Dynamic Allocation

v What we want is dynamically-allocated memory
§ Your program explicitly requests a new block of memory

• The language allocates it at runtime, perhaps with help from OS

§ Dynamically-allocated memory persists until either:
• Your code explicitly deallocated it (manual memory management)
• A garbage collector collects it (automatic memory management)

v C requires you to manually manage memory
§ Gives you more control, but causes headaches

8

CSE333, Autumn 2020L04: The Heap, Structs

Aside: NULL

v NULL is a memory location that is guaranteed to be
invalid
§ In C on Linux, NULL is 0x0 and an attempt to dereference NULL

causes a segmentation fault

v Useful as an indicator of an uninitialized (or currently
unused) pointer or allocation error
§ It’s better to cause a segfault than to allow the corruption of

memory!

9

int main(int argc, char** argv) {
int* p = NULL;
*p = 1; // causes a segmentation fault
return 0;

}

segfault.c

CSE333, Autumn 2020L04: The Heap, Structs

malloc()

v General usage:

v malloc allocates a block of memory of the requested
size
§ Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed!

§ You should assume that the memory initially contains garbage
§ You’ll typically use sizeof to calculate the size you need

var = (type*) malloc(size in bytes)

// allocate a 10-float array
float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL) {

return errcode;
}
... // do stuff with arr

10

CSE333, Autumn 2020L04: The Heap, Structs

calloc()

v General usage:

v Like malloc, but also zeros out the block of memory
§ Helpful when zero-initialization wanted (but don’t use it to mask

bugs – fix those)
§ Slightly slower; but useful for non-performance-critical code or if

you really are planning to zero out the new block of memory
§ malloc and calloc are found in stdlib.h

var = (type*) calloc(num, bytes per element)

// allocate a 10-double array
double* arr = (double*) calloc(10, sizeof(double));
if (arr == NULL) {

return errcode;
}
... // do stuff with arr

11

CSE333, Autumn 2020L04: The Heap, Structs

free()

v Usage: free(pointer);

v Deallocates the memory pointed-to by the pointer
§ Pointer must point to the first byte of heap-allocated memory (i.e.

something previously returned by malloc or calloc)
§ Freed memory becomes eligible for future allocation
§ The bits in the pointer are not changed by calling free

• Defensive programming: can set pointer to NULL after freeing it

12

free(pointer);

float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL)

return errcode;
... // do stuff with arr
free(arr);
arr = NULL; // OPTIONAL

CSE333, Autumn 2020L04: The Heap, Structs

The Heap

v The Heap is a large pool of
available memory used to hold
dynamically-allocated data
§ malloc allocates chunks of data in

the Heap; free deallocates those
chunks

§ malloc maintains bookkeeping data
in the Heap to track allocated blocks
• Lab 5 from 351!

13

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

CSE333, Autumn 2020L04: The Heap, Structs

Heap and Stack Example

14

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums

Note: Arrow points
to next instruction.

CSE333, Autumn 2020L04: The Heap, Structs

Heap and Stack Example

15

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2020L04: The Heap, Structs

Heap and Stack Example

16

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2020L04: The Heap, Structs

Heap and Stack Example

17

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

malloc

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2020L04: The Heap, Structs

Heap and Stack Example

18

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2020L04: The Heap, Structs

Heap and Stack Example

19

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i 0 a2

CSE333, Autumn 2020L04: The Heap, Structs

Heap and Stack Example

20

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

1 2 3 4

main
ncopy

copy
a size 4

nums 1 2 3 4

i 4 a2

CSE333, Autumn 2020L04: The Heap, Structs

Heap and Stack Example

21

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2020L04: The Heap, Structs

Heap and Stack Example

22

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2020L04: The Heap, Structs

Heap and Stack Example

23

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums 1 2 3 4

free

CSE333, Autumn 2020L04: The Heap, Structs

Heap and Stack Example

24

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2020L04: The Heap, Structs

Memory Corruption

v There are all sorts of ways to corrupt memory in C

27

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int a[2];
int* b = malloc(2*sizeof(int));
int* c;

a[2] = 5; // assign past the end of an array
b[0] += 2; // assume malloc zeros out memory
c = b+3; // mess up your pointer arithmetic
free(&(a[0])); // free something not malloc'ed
free(b);
free(b); // double-free the same block
b[0] = 5; // use a freed (dangling) pointer

// any many more!
return 0;

}memcorrupt.c

CSE333, Autumn 2020L04: The Heap, Structs

Memory Corruption - What Happens?

28

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int a[2];
int* b = malloc(2*sizeof(int));
int* c;

a[2] = 5; // assign past the end of an array
b[0] += 2; // assume malloc zeros out memory
c = b+3; // mess up your pointer arithmetic
free(&(a[0])); // free something not malloc'ed
free(b);
free(b); // double-free the same block
b[0] = 5; // use a freed (dangling) pointer

// any many more!
return 0;

}

memcorrupt.c

stack:

heap:

main

a

b

c

?

?

?

?

???

X

CSE333, Autumn 2020L04: The Heap, Structs

Memory Leak

v A memory leak occurs when code fails to deallocate
dynamically-allocated memory that is no longer used
§ e.g. forget to free malloc-ed block, lose/change pointer to

malloc-ed block

v What happens: program’s VM footprint will keep growing
§ This might be OK for short-lived program, since all memory is

deallocated when program ends
§ Usually has bad repercussions for long-lived programs

• Might slow down over time (e.g. lead to VM thrashing)
• Might exhaust all available memory and crash
• Other programs might get starved of memory

29

CSE333, Autumn 2020L04: The Heap, Structs

Lecture Outline

v Heap-allocated Memory
§ malloc() and free()
§ Memory leaks

v structs and typedef

30

CSE333, Autumn 2020L04: The Heap, Structs

Structured Data

v A struct is a C datatype that contains a set of fields
§ Similar to a Java class, but with no methods or constructors
§ Useful for defining new structured types of data
§ Act similarly to primitive variables
§ A struct tagname is a tag; not a full first-class type name

v Generic declaration:

31

struct tagname {
type1 name1;
...
typeN nameN;

};

// the following defines a new
// structured datatype called
// a "struct Point"
struct Point {

float x, y;
};

// declare and initialize a
// struct Point variable
struct Point origin = {0.0,0.0};

CSE333, Autumn 2020L04: The Heap, Structs

Using structs

v Use “.” to refer to a field in a struct
v Use “->” to refer to a field from a struct pointer

§ Dereferences pointer first, then accesses field

32

struct Point {
float x, y;

};

int main(int argc, char** argv) {
struct Point p1 = {0.0, 0.0}; // p1 is stack allocated
struct Point* p1_ptr = &p1;

p1.x = 1.0;
p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;
return 0;

}

simplestruct.c

CSE333, Autumn 2020L04: The Heap, Structs

Copy by Assignment

v You can assign the value of a struct from a struct of the
same type – this copies the entire contents!

33

#include <stdio.h>

struct Point {
float x, y;

};

int main(int argc, char** argv) {
struct Point p1 = {0.0, 2.0};
struct Point p2 = {4.0, 6.0};

printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
p2 = p1;
printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
return 0;

}

structassign.c

CSE333, Autumn 2020L04: The Heap, Structs

typedef

v Generic format: typedef type name;

v Allows you to define new data type names/synonyms
§ Both type and name are usable and refer to the same type
§ Be careful with pointers – * before name is part of type!

34

typedef type name;

// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for "char*"
typedef char *str;

// make "Point" a synonym for "struct point_st { ... }“
// make "PointPtr" a synonym for "struct point_st*"
typedef struct point_st {

superlong x;
superlong y;

} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};

CSE333, Autumn 2020L04: The Heap, Structs

Dynamically-allocated Structs

v You can malloc and free structs, just like other data
type
§ sizeof is particularly helpful here

35

// a complex number is a + bi
typedef struct complex_st {

double real; // real component
double imag; // imaginary component

} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*
ComplexPtr AllocComplex(double real, double imag) {

Complex* retval = (Complex*) malloc(sizeof(Complex));
if (retval != NULL) {

retval->real = real;
retval->imag = imag;

}
return retval;

}

complexstruct.c

CSE333, Autumn 2020L04: The Heap, Structs

Structs as Arguments

v Structs are passed by value, like everything else in C
§ Entire struct is copied – where?
§ To manipulate a struct argument, pass a pointer instead

36

typedef struct point_st {
int x, y;

} Point, *PointPtr;

void DoubleXBroken(Point p) { p.x *= 2; }

void DoubleXWorks(PointPtr p) { p->x *= 2; }

int main(int argc, char** argv) {
Point a = {1,1};
DoubleXBroken(a);
printf("(%d,%d)\n", a.x, a.y); // prints: (,)
DoubleXWorks(&a);
printf("(%d,%d)\n", a.x, a.y); // prints: (,)
return 0;

}

CSE333, Autumn 2020L04: The Heap, Structs

Returning Structs

v Exact method of return depends on calling conventions
§ Often in %rax and %rdx for small structs
§ Often returned in memory for larger structs

37

// a complex number is a + bi
typedef struct complex_st {

double real; // real component
double imag; // imaginary component

} Complex, *ComplexPtr;

Complex MultiplyComplex(Complex x, Complex y) {
Complex retval;

retval.real = (x.real * y.real) - (x.imag * y.imag);
retval.imag = (x.imag * y.real) - (x.real * y.imag);
return retval; // returns a copy of retval

}

complexstruct.c

CSE333, Autumn 2020L04: The Heap, Structs

Pass Copy of Struct or Pointer?

v Value passed: passing a pointer is cheaper and takes less
space unless struct is small

v Field access: indirect accesses through pointers are a bit
more expensive and can be harder for compiler to
optimize

v For small stucts (like struct complex_st), passing a
copy of the struct can be faster and often preferred if
function only reads data; for large structs or if the
function should change caller’s data, use pointers

38

CSE333, Autumn 2020L04: The Heap, Structs

Extra Exercise #1

v Write a program that defines:
§ A new structured type Point

• Represent it with floats for the x and y coordinates

§ A new structured type Rectangle
• Assume its sides are parallel to the x-axis and y-axis
• Represent it with the bottom-left and top-right Points

§ A function that computes and returns the area of a Rectangle
§ A function that tests whether a Point is inside of a Rectangle

39

CSE333, Autumn 2020L04: The Heap, Structs

Extra Exercise #2

v Implement AllocSet() and FreeSet()
§ AllocSet() needs to use malloc twice: once to allocate a new

ComplexSet and once to allocate the “points” field inside it
§ FreeSet() needs to use free twice

40

typedef struct complex_st {
double real; // real component
double imag; // imaginary component

} Complex;

typedef struct complex_set_st {
double num_points_in_set;
Complex* points; // an array of Complex

} ComplexSet;

ComplexSet* AllocSet(Complex c_arr[], int size);
void FreeSet(ComplexSet* set);

