
CSE333, Autumn 2020L01: Intro, C

Intro, C refresher
CSE 333 Autumn 2020

Instructor: Hal Perkins

Teaching Assistants:
Rehaan Bhimani Ramya Challa Eric Chan
Mengqi Chen Ian Hsiao Pat Kosakanchit
Arjun Singh Guramrit Singh Sylvia Wang
Yifan Xu Robin Yang Velocity Yu

Welcome – please set up
your Zoom session. We’ll
start the actual class meeting
at 11:30 am pdt

CSE333, Autumn 2020L01: Intro, C

Lecture Outline

v Course Introduction
v Course Policies

§ https://courses.cs.washington.edu/courses/cse333/20au/syllabus/

v C Intro

2

https://courses.cs.washington.edu/courses/cse333/20au/syllabus/

CSE333, Autumn 2020L01: Intro, C

To get started…

v It’s all virtual, all the time this quarter

v Core infrastructure is same as it’s aways been
(Gradescope, Gitlab, web, discussion board) except that
lab machines are remote login only all quarter

v But lectures, sections, office hours – Zoom

v Most important: stay healthy, wear masks, keep your
(physical) distance from others, help others
§ (And register and vote!)

3

CSE333, Autumn 2020L01: Intro, C

Virtual Lectures
v Classes will be mostly lectures – more interaction in

sections
§ Worked fairly well in Spring and Summer – but let us know where

we could do better!
v Conventions (from page on our web site)

§ Lecture will be recorded and archived – available to class only
§ If you have a question, type “hand” or “question” in Zoom chat

window
• If needed, indicate if we should pause recording while you’re talking

§ Please keep your microphone muted during class unless you’re
using it for a question or during breakout room discussions

§ Lecture slides will be posted in advance along with “virtual
handouts” for some lectures

4

CSE333, Autumn 2020L01: Intro, C

Virtual Sections

v Sections: more Zoom
§ Not normally recorded so we can have open discussions and

group work without people being too self-conscious
§ We’re going to try to produce videos for things that would

normally be done as demos or presentations in; details tba
• Those will be available online

§ Slides and any sample code, worksheets, etc. posted as always

5

CSE333, Autumn 2020L01: Intro, C

Virtual Everything Else

v Office hours: also Zoom; combination of group gatherings,
breakouts, waiting rooms, sign-up sheets to organize – all
as needed
§ Not recorded or archived
§ Once gitlab repos are set up later today, if your question concerns

your code (exercises, projects), please push latest code to the
repo before meeting with TA to save some time

v You will be bombarded with email as we add these things
to Canvas/Zoom. Feel free to file away for future
reference. J

6

CSE333, Autumn 2020L01: Intro, C

Stay in Touch – Speak up

v This is a strange world we’re in and there’s a lot of stress
for many people

v Please speak up if things aren’t (or are!) going well
§ We can often help if we know about things, so stay in touch with

TAs, instructor, advising, friends and peers, others

v We’re all in this together but not all in the same way, so
please show understanding and compassion for each
other and help when you can – both in and outside of
class

7

CSE333, Autumn 2020L01: Intro, C

Introductions: Course Staff

v Hal Perkins (instructor)
§ Long-time CSE faculty member and CSE 333 veteran

v TAs:
§ Rehaan Bhimani, Ramya Challa, Eric Chan, Mengqi Chen, Ian

Hsiao, Pat Kosakanchit, Arjun Singh, Guramrit Singh, Sylvia Wang,
Yifan Xu, Robin Yang, Velocity Yu

§ Available in section, office hours, and discussion group
§ An invaluable source of information and help

v Get to know us
§ We are here to help you succeed!

8

CSE333, Autumn 2020L01: Intro, C

Introductions: Students

v ~165 students this quarter
§ There are no overload forms or waiting lists for CSE courses

v Expected background
§ Prereq: CSE 351 – C, pointers, memory model, linker, system calls
§ CSE 391 or Linux skills needed for CSE 351 assumed

9

CSE333, Autumn 2020L01: Intro, C

Course Map: 100,000 foot view

10

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Autumn 2020L01: Intro, C

Systems Programming

v The programming skills, engineering discipline, and
knowledge you need to build a system

§ Programming: C / C++

§ Discipline: testing, debugging, performance analysis

§ Knowledge: long list of interesting topics
• Concurrency, OS interfaces and semantics, techniques for consistent

data management, distributed systems algorithms, …
• Most important: a deep(er) understanding of the “layer below”

11

CSE333, Autumn 2020L01: Intro, C

Discipline?!?

v Cultivate good habits, encourage clean code
§ Coding style conventions
§ Unit testing, code coverage testing, regression testing
§ Documentation (code comments, design docs)
§ Code reviews

v Will take you a lifetime to learn
§ But oh-so-important, especially for systems code

• Avoid write-once, read-never code

12

CSE333, Autumn 2020L01: Intro, C

Lecture Outline

v Course Introduction
v Course Policies

§ https://courses.cs.washington.edu/courses/cse333/20au/syllabus/
§ Summary here, but you must read the full details online

v C Intro

13

CSE333, Autumn 2020L01: Intro, C

Communication
v Website: http://cs.uw.edu/333

§ Schedule, policies, materials, assignments, etc.

v Discussion: Ed group linked to course home page
§ Must log in using your @uw.edu Google identity (not cse)
§ Ask and answer questions – staff will monitor and contribute

v Staff mailing list: cse333-staff@cs for things not appropriate for Ed group
§ (don’t email to instructor or individual TAs if possible – helps us get quick answers for

you and coordinate better if it goes to the staff)

v Course mailing list: for announcements from staff
§ Registered students automatically subscribed with your @uw email

v Office Hours: spread throughout the week
§ Schedule posted shortly and will start right away
§ Can also e-mail to staff list to make individual appointments

14

http://cs.uw.edu/333

CSE333, Autumn 2020L01: Intro, C

Course Components

v Lectures (~30)
§ Introduce the concepts; take notes!!!

v Sections (10)
§ Applied concepts, important tools and skills for assignments,

clarification of lectures, exam review and preparation

v Programming Exercises (~20)
§ Roughly one per lecture, due the morning before the next lecture
§ Coarse-grained grading (0, 1, 2, or 3)

v Programming Projects (0+4)
§ Warm-up, then 4 “homeworks” that build on each other

v No traditional exams, but hoping to do ~4 “recap/review”
assignments for things traditionally covered on exams

15

CSE333, Autumn 2020L01: Intro, C

Grading (tentative)

v Exercises: ~35%
§ Submitted via GradeScope (account info mailed this morning)
§ Graded on correctness and style by TAs

v Projects: ~45% total
§ Submitted via GitLab; must tag commit that you want graded
§ Binaries provided if you didn’t get previous part working

v Recap/review assignments: ~20%

v More details on course website
§ You must read the syllabus there – you are responsible for it

16

CSE333, Autumn 2020L01: Intro, C

Deadlines and Student Conduct

v Late policies
§ Exercises: no late submissions accepted, due 10 am
§ Projects: 4 late days for entire quarter, max 2 per project
§ Need to get things done on time – difficult to catch up!

• But given remote world, we’ll work with you if things come up

v Academic Integrity (read the full policy on the web)
§ I trust you implicitly and will follow up if that trust is violated
§ In short: don’t attempt to gain credit for something you didn’t do

and don’t help others do so either
§ This does not mean suffer in silence – learn from the course staff

and peers, talk, share ideas; but don’t share or copy work that is
supposed to be yours

17

CSE333, Autumn 2020L01: Intro, C

And off we go…

v Mid-week start, so we’re going to fold together a lot of
the usual MWThF week 1 into WThF

v Goal is to figure out setup and computing infrastructure
right away so we don’t put that off and then have a
crunch later in the quarter

v So:
§ First exercise out today, due Friday morning 10 am
§ Warmup/logistics for larger projects in sections tomorrow

• HW0 (the warmup project) published this afternoon and gitlab repos
created then. Feel free to ignore until section tomorrow and we’ll
walk through the whole thing.

18

CSE333, Autumn 2020L01: Intro, C

Deep Breath….

v Any questions, comments, observations, before we go on
to, uh, some technical stuff?

21

CSE333, Autumn 2020L01: Intro, C

Lecture Outline

v Course Introduction
v Course Policies

§ https://courses.cs.washington.edu/courses/cse333/18sp/syllabus/

v C Intro
§ Workflow, Variables, Functions

22

CSE333, Autumn 2020L01: Intro, C

C

v Created in 1972 by Dennis Ritchie
§ Designed for creating system software
§ Portable across machine architectures
§ Most recently updated in 1999 (C99) and 2011 (C11)

v Characteristics
§ “Low-level” language that allows us to exploit underlying features

of the architecture – but easy to fail spectacularly (!)
§ Procedural (not object-oriented)
§ Typed but unsafe (possible to bypass the type system)
§ Small, basic library compared to Java, C++, most others….

23

CSE333, Autumn 2020L01: Intro, C

Generic C Program Layout

24

#include <system_files>
#include "local_files"

#define macro_name macro_expr

/* declare functions */
/* declare external variables & structs */

int main(int argc, char* argv[]) {
/* the innards */

}

/* define other functions */

CSE333, Autumn 2020L01: Intro, C

C Syntax: main

v To get command-line arguments in main, use:
§ int main(int argc, char* argv[])

v What does this mean?
§ argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument).

§ argv is an array containing pointers to the arguments as strings
(more on pointers later)

v Example: $ foo hello 87
§ argc = 3

§ argv[0]="foo", argv[1]="hello", argv[2]="87"

25

int main(int argc, char* argv[])

CSE333, Autumn 2020L01: Intro, C

C Workflow
Editor (emacs, vi) or IDE (eclipse)

26

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries
LINK

CSE333, Autumn 2020L01: Intro, C

C to Machine Code

27

C source file
(sumstore.c)

Assembly file
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,
int* dest) {

*dest = x + y;
}

sumstore:
addl %edi, %esi
movl %esi, (%rdx)
ret

Machine code
(sumstore.o)

400575: 01 fe
89 32
c3

C compiler
(gcc –c)

CSE333, Autumn 2020L01: Intro, C

When Things Go South…

v Errors and Exceptions
§ C does not have exception handling (no try/catch)
§ Errors are returned as integer error codes from functions
§ Because of this, error handling is ugly and inelegant

v Crashes
§ If you do something bad, you hope to get a “segmentation fault”

(believe it or not, this is the “good” option)

28

CSE333, Autumn 2020L01: Intro, C

Java vs. C (351 refresher)

v Are Java and C mostly similar (S) or significantly different
(D) in the following categories?
§ List any differences you can recall (even if you put ‘S’)

30

Language Feature S/D Differences in C

Control structures S

Primitive datatypes S/D Similar but sizes can differ (char, esp.), unsigned,
no boolean, uninitialized data, …

Operators S Java has >>>, C has ->

Casting D Java enforces type safety, C does not

Arrays D Not objects, don’t know their own length, no
bounds checking

Memory management D Manual (malloc/free), no garbage collection

CSE333, Autumn 2020L01: Intro, C

Primitive Types in C

v Integer types
§ char, int

v Floating point
§ float, double

v Modifiers
§ short [int]
§ long [int, double]
§ signed [char, int]
§ unsigned [char, int]

31

C Data Type 32-bit 64-bit printf
char 1 1 %c

short int 2 2 %hd
unsigned short int 2 2 %hu

int 4 4 %d / %i
unsigned int 4 4 %u

long int 4 8 %ld
long long int 8 8 %lld

float 4 4 %f
double 8 8 %lf

long double 12 16 %Lf
pointer 4 8 %p

Typical sizes – see sizeofs.c

CSE333, Autumn 2020L01: Intro, C

C99 Extended Integer Types

v Solves the conundrum of “how big is an long int?”

32

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {
int8_t a; // exactly 8 bits, signed
int16_t b; // exactly 16 bits, signed
int32_t c; // exactly 32 bits, signed
int64_t d; // exactly 64 bits, signed
uint8_t w; // exactly 8 bits, unsigned
...

} Use extended types in cse333 code

CSE333, Autumn 2020L01: Intro, C

Basic Data Structures
v C does not support objects!!!

v Arrays are contiguous chunks of memory
§ Arrays have no methods and do not know their own length
§ Can easily run off ends of arrays in C – security bugs!!!

v Strings are null-terminated char arrays
§ Strings have no methods, but string.h has helpful utilities

v Structs are the most object-like feature, but are just collections
of fields – no “methods” or functions

33

x h e l l o \n \0char* x = "hello\n";

CSE333, Autumn 2020L01: Intro, C

Function Definitions

v Generic format:

34

// sum of integers from 1 to max
int sumTo(int max) {
int i, sum = 0;

for (i = 1; i <= max; i++) {
sum += i;

}

return sum;
}

returnType fname(type param1, …, type paramN) {
// statements

}

CSE333, Autumn 2020L01: Intro, C

Function Ordering

v You shouldn’t call a function that hasn’t been declared yet

35

#include <stdio.h>

int main(int argc, char** argv) {
printf("sumTo(5) is: %d\n", sumTo(5));
return 0;

}

// sum of integers from 1 to max
int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {
sum += i;

}
return sum;

}

sum_badorder.c

CSE333, Autumn 2020L01: Intro, C

Solution 1: Reverse Ordering

v Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

36

#include <stdio.h>

// sum of integers from 1 to max
int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {
sum += i;

}
return sum;

}

int main(int argc, char** argv) {
printf("sumTo(5) is: %d\n", sumTo(5));
return 0;

}

sum_betterorder.c

CSE333, Autumn 2020L01: Intro, C

Solution 2: Function Declaration

v Teaches the compiler arguments and return types;
function definitions can then be in a logical order

37

sum_declared.c #include <stdio.h>

int sumTo(int); // func prototype

int main(int argc, char** argv) {
printf("sumTo(5) is: %d\n", sumTo(5));
return 0;

}

// sum of integers from 1 to max
int sumTo(int max) {

int i, sum = 0;
for (i = 1; i <= max; i++) {

sum += i;
}
return sum;

}

Hint: code examples
from slides are on the
course web for you to
experiment with

CSE333, Autumn 2020L01: Intro, C

Function Declaration vs. Definition

v C/C++ make a careful distinction between these two

v Definition: the thing itself
§ e.g. code for function, variable definition that creates storage
§ Must be exactly one definition of each thing (no duplicates)

v Declaration: description of a thing
§ e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include
• Should also #include declaration in the file with the actual

definition to check for consistency
§ Needs to appear in all files that use that thing

• Should appear before first use
38

CSE333, Autumn 2020L01: Intro, C

Multi-file C Programs

39

void sumstore(int x, int y, int* dest) {
*dest = x + y;

}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {
int z, x = 351, y = 333;
sumstore(x,y,&z);
printf("%d + %d = %d\n",x,y,z);
return 0;

}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:
$ gcc -o sumnum sumnum.c sumstore.c

definition

declaration

CSE333, Autumn 2020L01: Intro, C

Compiling Multi-file Programs

v The linker combines multiple object files plus statically-
linked libraries to produce an executable
§ Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

40

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or
gcc

CSE333, Autumn 2020L01: Intro, C

To-do List

v Explore the website thoroughly: http://cs.uw.edu/333
v Computer setup: CSE remote lab, attu, or CSE Linux VM
v Exercise 0 is due 10 am Friday before class

§ Find exercise spec on website, submit via Gradescope
§ Sample solution will be posted Friday after class
§ Give it your best shot to get it done on time

v Gradescope accounts created just before class
§ Userid is your uw.edu email address
§ Exercise submission: find CSE 333 20au, click on the exercise,

drag-n-drop file(s)! That’s it!!

v Project repos created and hw0 out by tonight!!
§ All will become clear in sections tomorrow! J

42

http://cs.uw.edu/333

