
CSE 333 – SECTION 3
POSIX I/O Functions

Administrivia

•Questions (?)

•HW1 Due Tonight

• Exercise 7 due Monday (out later today)

POSIX
• Portable Operating System Interface
• Family of standards specified by the IEEE
• Maintains compatibility across variants of Unix-like OS
• Defines API and standards for basic I/O: file, terminal and

network
• Also defines a standard threading library API

Basic File Operations
• Open the file
• Read from the file
• Write to the file
• Close the file / free up resources

System I/O Calls
int open(char* filename, int flags, mode_t mode);

Returns an integer which is the file descriptor.
Returns -1 if there is a failure.

filename: A string representing the name of the file.
flags: An integer code describing the access.

O_RDONLY -- opens file for read only
O_WRONLY – opens file for write only
O_RDWR – opens file for reading and writing
O_APPEND --- opens the file for appending
O_CREAT -- creates the file if it does not exist
O_TRUNC -- overwrite the file if it exists

mode: File protection mode. Ignored if O_CREAT is not specified.
[man 2 open]

System I/O Calls
ssize_t read(int fd, void *buf, size_t count);

fd: file descriptor.
buf: address of a memory area into which the data is read.
count: the maximum amount of data to read from the stream.
The return value is the actual amount of data read from the file.

ssize_t write(int fd, const void *buf, size_t count);

int close(int fd);
Returns 0 on success, -1 on failure.

[man 2 read]
[man 2 write]
[man 2 close]

• Question: Why is it important to remember to call the
close() function once you have finished working on a file?

• In order to free resources i.e. other processes can
acquire locks on those files.

Errors
• When an error occurs, the error number is stored in errno,

which is defined under <errno.h>
• View/Print details of the error using perror() and errno.
• POSIX functions have a variety of error codes to represent

different errors. Some common error conditions:
• EBADF - fd is not a valid file descriptor or is not open for reading.
• EFAULT - buf is outside your accessible address space.
• EINTR - The call was interrupted by a signal before any data was

read.
• EISDIR - fd refers to a directory.

• errno is shared by all library functions and overwritten
frequently, so you must read it right after an error to be sure of
getting the right code

[man 3 errno]
[man 3 perror]

Reading a file
#include <errno.h>
#include <unistd.h>

...

char *buf = ...; // buffer has size n
int bytes_left = n; // where n is the length of file in bytes
int result = 0;

while (bytes_left > 0) {
result = read(fd, buf + (n-bytes_left), bytes_left);
if (result == -1) {

if (errno != EINTR) {
// a real error happened, return an error result
}
// EINTR happened, do nothing and loop back around
continue;

}
bytes_left -= result;

}

Again, why are we learning POSIX
functions?
• They are unbuffered. You can implement different

buffering/caching strategies on top of read/write.

• More explicit control since read and write functions are
system calls and you can directly access system
resources.

• There is no standard higher level API for network and
other I/O devices.

STDIO vs. POSIX Functions
• User mode vs. Kernel mode.

• STDIO library functions
– fopen, fread, fwrite, fclose, etc.

use FILE* pointers.

• POSIX functions
– open, read, write, close, etc.
use integer file descriptors.

Exercise 1
• Given the name of a file as a command-line argument, write a C

program that is analogous to cat, i.e. one that prints the contents of
the file to stdout. Handle any errors!

• int main(int argc, char** argv) {
• /* 1. Check to make sure we have a valid command line arguments */
•
• /* 2. Open the file, use O_RDONLY flag */
•
• /* 3. Read from the file and write it to standard out. Try doing
• this without using printf() and instead have write() pipe to
• Stdout. It might be helpful to initialize a buffer variable
• (of size 1024 bytes should be fine) to pass in to read() and
• write().
•
• /*4. Clean up */
• }

Directories
• Accessing directories:

• Open a directory
• Iterate through its contents
• Close the directory

• Opening a directory:
DIR *opendir(const char* name);

• Opens a directory given by name and provides a pointer DIR* to
access files within the directory.

• Don’t forget to close the directory when done:
int closedir(DIR *dirp);

[man 0P dirent.h]
[man 3 opendir]
[man 3 closedir]

Directories
• Reading a directory file.

struct dirent *readdir(DIR *dirp);

struct dirent {
ino_t d_ino; /* inode number for the dir entry */
off_t d_off; /* not necessarily an offset */
unsigned short d_reclen; /* length (in bytes) of this record */
unsigned char d_type; /* type of file (not what you think);

not supported by all file system types */
char d_name[NAME_MAX+1] ; /* directory entry name, null

terminated */
};

[man 3 readdir]
[man readdir]

Read the man pages
• man, section 2: Linux system calls
• man 2 intro
• man 2 syscalls
• man 2 open
• man 2 read

• …
• man, section 3: glibc / libc library functions
• man 3 intro
• man 3 fopen
• man 3 fread
• man 3 stdio for a full list of functions declared in <stdio.h>

• …

Exercise 2
• Given the name of a directory, write a C program that is

analogous to ls, i.e. prints the names of the entries of the
directory to stdout. Handle any errors!

• int main(int argc, char** argv) {
• /* 1. Check to make sure we have a valid command line

arguments */

• /* 2. Open the directory, look at opendir() */

• /* 3. Read through/parse the directory and print out file
names. Look at readdir() and struct dirent */

• /* 4. Clean up */
• }

