CSE 331
 Software Design \& Implementation

Hal Perkins
Spring 2019
Lecture 2 - Reasoning About Code With Logic

Administrivia

- Next few lectures: two presentations linked to course calendar on the web:
- Lecture notes - primary source
- Powerpoint slides - summary; lecture today and reference for following couple of lectures
They are complementary and you should understand both of them
- HW1 out by tomorrow. Programming logic with no loops. Due Tuesday night, 11 pm.
- Related examples, problems, etc. in sections tomorrow

Reasoning about code

Determine what facts are true as a program executes

- Under what assumptions

Examples:

- If \mathbf{x} starts positive, then y is 0 when the loop finishes
- Contents of the array that arr refers to are sorted
- Except at one code point, $\mathbf{x}+\mathbf{y}==\mathbf{z}$
- For all instances of Node n, n.next == null V n.next.prev $==n$
- ...
- Notation: In logic we often use \wedge for "and" and v for "or". Concise and convenient, but we're not dogmatic about it

Why do this?

- Essential complement to testing, which we will also study
- Testing: Actual results for some actual inputs
- Logical reasoning: Reason about whole classes of inputs/states at once ("If $\mathbf{x}>0, \ldots$ ")
- Prove a program correct (or find bugs trying), or (even better) develop program and proof together to get a program that is correct by construction
- Understand why code is correct
- Stating assumptions is the essence of specification
- "Callers must not pass null as an argument"
- "Callee will always return an unaliased object"
- ...

Our approach

- Hoare Logic: a classic approach to logical reasoning about code
- For now, consider just variables, assignments, if-statements, while-loops
- So no objects or methods for now
- This lecture: The idea, without loops, in 3 passes

1. High-level intuition of forward and backward reasoning
2. Precise definition of logical assertions, preconditions, etc.
3. Definition of weaker/stronger and weakest-precondition

- Next lecture: Loops

Why?

- Programmers rarely "use Hoare logic" in this much detail
- For simple snippets of code, it's overkill
- Gets very complicated with objects and aliasing
- But can be very useful to develop and reason about loops and data with subtle invariants
- Examples: Homework 0, Homework 2
- Also it's an ideal setting for the right logical foundations
- How can logic "talk about" program states?
- How does code execution "change what is true"?
- What do "weaker" and "stronger" mean?

This is all essential for specifying library-interfaces, which does happen All the Time in The Real World ${ }^{\circledR}$ (coming lectures)

Example

Forward reasoning:

- Suppose we initially know (or assume) w >0

$$
\begin{aligned}
& \text { //w }>0 \\
& \mathrm{x}=17 ; \\
& / / \mathrm{w}>0 \wedge \mathrm{x}==17 \\
& \mathrm{y}=42 ; \\
& / / \mathrm{w}>0 \wedge \mathrm{x}==17 \wedge \mathrm{y}==42 \\
& \mathrm{z}=\mathrm{w}+\mathrm{x}+\mathrm{y} ; \\
& \mathrm{l/w} \mathrm{w} \wedge \mathrm{x}==17 \wedge \mathrm{y}==42 \wedge \mathrm{z}>59
\end{aligned}
$$

- Then we know various things after, including z > 59

Example

Backward reasoning:

- Suppose we want \mathbf{z} to be negative at the end

$$
\begin{aligned}
& \text { //w } w+17+42<0 \\
& x=17 ; \\
& \text { //w+x+42<0 } \\
& y=42 ; \\
& \text { //w+x+y<0 } \\
& z=w+x+y ; \\
& / / z<0
\end{aligned}
$$

- Then we know initially we need to know/assume w < -59
- Necessary and sufficient

Forward vs. Backward, Part 1

- Forward reasoning:
- Determine what follows from initial assumptions
- Most useful for maintaining an invariant
- Backward reasoning
- Determine sufficient conditions for a certain result
- If result desired, the assumptions suffice for correctness
- If result undesired, the assumptions suffice to trigger bug

Forward vs. Backward, Part 2

- Forward reasoning:
- Simulates the code (for many "inputs" "at once")
- Often more intuitive
- But introduces [many] facts irrelevant to a goal
- Backward reasoning
- Often more useful: Understand what each part of the code contributes toward the goal
- "Thinking backwards" takes practice but gives you a powerful new way to reason about programs and to write correct code

Conditionals

```
// initial assumptions
if(...) {
    ... // also know test evaluated to true
} else {
    ... // also know test evaluated to false
}
// either branch could have executed
```

Two key ideas:

1. The precondition for each branch includes information about the result of the test-expression
2. The overall postcondition is the disjunction ("or") of the postcondition of the branches

Example (Forward)

Assume initially $\mathbf{x}>=0$

$$
\begin{aligned}
& / / x>=0 \\
& z=0 ; \\
& / / x>=0 \wedge z==0 \\
& \text { if }(x!=0)\{ \\
& \quad / / x>=0 \wedge z==0 \wedge x!=0(\text { so } x>0) \\
& \quad z=x ; \\
& \quad / / \ldots \wedge z>0 \\
& \} \text { else }\{ \\
& \quad / / x>=0 \wedge z==0 \wedge!(x!=0) \quad(\text { so } x==0) \\
& \quad z=x+1 ; \\
& \quad / / \ldots \wedge z==1 \\
& \} \\
& / /(\ldots \wedge z>0) \vee(\ldots \wedge z==1) \quad(\text { so } z>0)
\end{aligned}
$$

Our approach

- Hoare Logic, a classic approach to logical reasoning about code
- [Named after its inventor, Tony Hoare]
- Considering just variables, assignments, if-statements, while-loops
- So no objects or methods
- This lecture: The idea, without loops, in 3 passes

1. High-level intuition of forward and backward reasoning
2. Precise definition of logical assertions, preconditions, etc.
3. Definition of weaker/stronger and weakest-precondition

- Next lecture: Loops

Some notation and terminology

- The "assumption" before some code is the precondition
- The "what holds after (given assumption)" is the postcondition
- Instead of writing pre/postconditions after //, write them in $\{\ldots\}$
- This is not Java
- How Hoare logic has been written "on paper" for 40ish years

$$
\begin{aligned}
& \{w<-59\} \\
& x=17 \\
& \{w+x<-42\}
\end{aligned}
$$

- In pre/postconditions, = is equality, not assignment
- Math's " $=$ ", which for numbers is Java's ==

$$
\begin{aligned}
& \{\mathrm{w}>0 \wedge \wedge x=17\} \\
& y=42 ; \\
& \{w>0 \wedge x=17 \wedge \quad y=42\}
\end{aligned}
$$

What an assertion means

- An assertion (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)
- A program state is something that "given" a variable can "tell you" its contents
- Or any expression that has no side-effects
- (informally, this is just the current values of all variables)
- An assertion holds for a program state, if evaluating using the program state produces true
- Evaluating a program variable produces its contents in the state
- Can think of an assertion as representing the set of (exactly the) states for which it holds

A Hoare Triple

- A Hoare triple is two assertions and one piece of code:

$$
\{P\} S\{Q\}
$$

- P the precondition
- S the code (statement)
- Q the postcondition
- A Hoare triple $\{P\} S\{Q\}$ is (by definition) valid if:
- For all states for which P holds, executing S always produces a state for which Q holds
- Less formally: If P is true before S, then Q must be true after
- Else the Hoare triple is invalid

Examples

Valid or invalid?

- (Assume all variables are integers without overflow)
- $\{x!=0\} y=x * x ;\{y>0\} \quad$ valid
- $\{z!=1\} y=z * z ;\{y!=z\} \quad$ invalid
- $\{x>=0\} y=2 * x ;\{y>x\} \quad$ invalid
- \{true\} (if(x > 7) \{y=4;\} else $\{y=3 ;\})$ \{y < 5\} valid
- \{true\} ($\mathrm{x}=\mathrm{y} ; \mathrm{z}=\mathrm{x}$;) $\{\mathrm{y}=\mathrm{z}\}$ valid
- $\{x=7 \wedge y=5\}$
(tmp=x; $\mathbf{x = t m p ; ~} \mathbf{y}=\mathbf{x}$;) invalid $\{y=7 \wedge x=5\}$

Examples

Valid or invalid?

- (Assume all variables are integers without overflow)
- $\{x!=0\} y=x * x ;\{y>0\}$ valid
- $\{z!=1\} y=z * z ;\{y!=z\}$ invalid
- $\{x>=0\} y=2 * x ;\{y>x\}$ invalid
- \{true\} (if(x > 7) \{y=4;\} else \{y=3;\}) \{y < 5\} valid
- \{true\} ($\mathrm{x}=\mathrm{y} ; \mathrm{z}=\mathrm{x}$;) $\{\mathrm{y}=\mathrm{z}\}$ valid
- $\{x=7 \wedge y=5\}$
invalid
(tmp=x; $\mathbf{x = t m p ; ~ y = x ;) ~}$
$\{y=7 \wedge x=5\}$

Aside: assert in Java

- An assertion in Java is a statement with a Java expression, e.g.,

$$
\text { assert x > } 0 \& \& y<x ;
$$

- Similar to our assertions
- Evaluate using a program state to get true or false
- Uses Java syntax
- In Java, this is a run-time thing: Run the code and raise an exception if assertion is violated
- Unless assertion-checking is disabled
- Later course topic - but really useful to detect bugs early
- This week: we are reasoning about the code, not running it on some input

The general rules

- So far: Decided if a Hoare triple was valid by using our understanding of programming constructs
- Now: For each kind of construct there is a general rule
- A rule for assignment statements
- A rule for two statements in sequence
- A rule for conditionals
- [next lecture:] A rule for loops
- ...

Basic rule: Assignment

$$
\{P\} x=e ;\{Q\}
$$

- Let Q^{\prime} be like \mathbf{Q} except replace every \mathbf{x} with \mathbf{e}
- Triple is valid if:

For all program states, if P holds, then Q^{\prime} holds

- That is, P implies Q^{\prime}, written $P=Q^{\prime}$
- Example: $\{z>34\} y=z+1 ;\{y>1\}$
- Q^{\prime} is $\{z+1>1\}$

Combining rule: Sequence

$$
\{P\} \quad S 1 ; S 2\{Q\}
$$

- Triple is valid if and only if there is an assertion R such that
- $\{P\} S 1\{R\}$ is valid, and
$-\{R\} S 2\{Q\}$ is valid
- Example: $\{\mathrm{z}>=1\} \mathrm{y}=\mathrm{z}+1$; $\mathrm{w}=\mathrm{y} * \mathrm{y}$; $\{\mathrm{w}>\mathrm{y}\}$ (integers)
- Let R be $\{y>1\}$ (this particular R picked because "it works")
- Show $\{z>=1\} y=z+1 ;\{y>1\}$
- Use rule for assignments: $z>=1$ implies $z+1>1$
- Show $\{y>1\} \quad w=y * y ; ~\{w>y\}$
- Use rule for assignments: y > 1 implies $y * y>y$

Combining rule: Conditional

$$
\{P\} \text { if(b) S1 else S2 }\{Q\}
$$

- Triple is valid if and only if there are assertions $\mathbf{Q 1 , Q 2 \text { such that }}$
$-\{P \wedge b\} S 1\{Q 1\}$ is valid, and
- $\{P \wedge!b\} S 2\{Q 2\}$ is valid, and
- Q1 V Q2 implies Q
- Example: \{true\} (if(x > 7) $y=x$; else $y=20$;) $\{y>5\}$
- Let $\mathrm{Q1}$ be $\{y>7\}$ (other choices work too)
- Let Q2 be $\{y=20\}$ (other choices work too)
- Use assignment rule to show \{true $\wedge x>7\} y=x ;\{y>7\}$
- Use assignment rule to show \{true $\wedge x<=7\} y=20 ;\{y=20\}$
- Indicate $\mathrm{y}>7 \mathrm{~V} \mathrm{y}=20$ implies $\mathrm{y}>5$

Our approach

- Hoare Logic, a classic approach to logical reasoning about code
- Considering just variables, assignments, if-statements, while-loops
- So no objects or methods
- This lecture: The idea, without loops, in 3 passes

1. High-level intuition of forward and backward reasoning
2. Precise definition of logical assertions, preconditions, etc.
3. Definition of weaker/stronger and weakest-precondition

- Next lecture: Loops

Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:

- P1 is stronger than P2
- P2 is weaker than P1
- Whenever P1 holds, P2 also holds
- So it is more (or at least as) "difficult" to satisfy P1
- The program states where P1 holds are a subset of the program states where P2 holds
- So P1 puts more constraints on program states
- So it's a stronger set of obligations/requirements

Examples

- $\mathbf{x}=17$ is stronger than $\mathbf{x}>0$
- \mathbf{x} is prime is neither stronger nor weaker than \mathbf{x} is odd
- \mathbf{x} is prime and $\mathbf{x}>2$ is stronger than \mathbf{x} is odd and $\mathbf{x}>2$

Why this matters to us

- Suppose:
- \{P\}S\{Q\}, and
- P is weaker than some P1, and
- Q is stronger than some Q 1
- Then: $\{P 1\} S\{Q\}$ and $\{P\} S\{Q 1\}$ and $\{P 1\} S\{Q 1\}$
- Example:
- P is $x>=0$
- P1 is $x>0$
$-S$ is $y=x+1$
$-Q$ is $y>0$
- Q1 is $y>=0$

So...

- For backward reasoning, if we want $\{P\} S\{Q\}$, we could instead:
- Show \{P1\}S\{Q\}, and
- Show P => P1
- Better, we could just show $\{\mathbf{P} 2\} \mathbf{S}\{\mathrm{Q}\}$ where $\mathbf{P} \mathbf{2}$ is the weakest precondition of \mathbf{Q} for \mathbf{S}
- Weakest means the most lenient assumptions such that Q will hold after executing s
- Any precondition P such that $\{P\} S\{Q\}$ is valid will be stronger than P2, i.e., P => P2
- Amazing (?): Without loops/methods, for any S and Q, there exists a unique weakest precondition, written wp(S,Q)
- Like our general rules with backward reasoning

Weakest preconditions

- $w p(\mathbf{x}=\mathbf{e} ; Q)$ is Q with each \mathbf{x} replaced by \mathbf{e}
- Example: $w p\left(\mathbf{x}=\mathrm{y}^{*} \mathrm{y} ;, \mathbf{x}>4\right)=\mathrm{y}^{*} \mathrm{y}>4$, i.e., $|\mathrm{y}|>2$
- $\mathbf{w p}(\mathbf{S} 1 ; \mathbf{S 2}, \mathbf{Q})$ is $\mathbf{w p}(\mathbf{S} 1, w p(\mathbf{S 2 , Q}))$
- i.e., let R be $w p(\mathbf{S 2 , Q})$ and overall $w p$ is $w p(S 1, R)$
- Example: wp($(\mathrm{y}=\mathrm{x}+1$; $\mathrm{z}=\mathrm{y}+1$;), $\mathrm{z}>2)=$ $(x+1)+1>2$, i.e., $x>0$
- wp(if b S1 else $\mathbf{S 2}, \mathrm{Q}$) is this logic formula:

$$
\text { (b } \wedge \mathrm{wp}(\mathrm{~S} 1, \mathrm{Q})) \vee(!\mathrm{b} \wedge \mathrm{wp}(\mathrm{~s} 2, \mathrm{Q}))
$$

- (In any state, b will evaluate to either true or false...)
- (You can sometimes then simplify the result)

Simple examples

- If S is $x=y^{*} y$ and Q is $x>4$, then $w p(S, Q)$ is $y * y>4$, i.e., $|y|>2$
- If S is $y=x+1 ; z=y-3$; and Q is $z=10$, then $w p(\mathbf{s}, \mathbf{Q}) \ldots$

$$
\begin{aligned}
& =w p(\mathbf{y}=\mathbf{x}+1 ; \mathbf{z}=\mathbf{y}-3 ;, \mathbf{z}=10) \\
& =w p(\mathbf{y}=\mathbf{x}+1 ;, w p(\mathbf{z}=\mathbf{y}-3 ;, \mathbf{z}=10)) \\
& =w p(\mathbf{y}=\mathbf{x}+1 ; \mathbf{y}-3=10) \\
& =w p(\mathbf{y}=\mathbf{x}+1 ;, \mathbf{y}=13) \\
& =x+1=13 \\
& =\mathbf{x}=12
\end{aligned}
$$

Bigger example

$$
\begin{aligned}
& S \text { is if (x }<5 \text {) \{ } \\
& \mathbf{x}=\mathbf{x} \mathbf{x}^{\boldsymbol{x}} \text {; } \\
& \text { \} else \{ } \\
& \mathbf{x}=\mathbf{x + 1} \text {; } \\
& \text { \} } \\
& Q \text { is } x>=9 \\
& \text { wp(S, } \mathbf{x}>=9) \\
& =\left(\mathbf{x}<5 \wedge \operatorname{wp}\left(\mathbf{x}=x^{*} x ;, x>=9\right)\right) \\
& \vee(x>=5 \wedge w p(x=x+1 ;, x>=9)) \\
& =\left(x<5 \wedge x^{*} x>=9\right) \\
& \vee(x>=5 \wedge x+1>=9) \\
& =(x<=-3) \vee(x>=3 \wedge x<5) \\
& \vee(x>=8)
\end{aligned}
$$

If-statements review

Forward reasoning
$\{P\}$
if B
$\{P \wedge B\}$
S1
\{Q1\}
else
$\{P \wedge!B\}$
S2
\{Q2\}
\{Q1 v Q2\}

Backward reasoning
$\{(B \wedge w p(S 1, Q)) \vee$
(! $\mathrm{B} \wedge \mathrm{wp}(\mathrm{S} 2, \mathrm{Q}))\}$
if B
\{wp(S1, Q)\}
S1
\{Q\}
else
\{wp(S2, Q)\}
s2
\{Q\}
\{Q\}

"Correct"

- If $w(\mathbf{S}, \mathbf{Q})$ is true, then executing \mathbf{s} will always produce a state where Q holds
- true holds for every program state

One more issue

- With forward reasoning, there is a problem with assignment:
- Changing a variable can affect other assumptions
- Example:

```
    {true}
    w=x+y;
    {w = x + y;}
    x=4;
    {w = x + y ^ x = 4}
    y=3;
    {w = x + y ^ x = 4 ^ y = 3}
```

But clearly we do not know w=7!

The fix

- When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
- So you refer to the "old contents"
- Corrected example:

```
{true}
w=x+y;
    {w=x+y;}
x=4;
    {w = x1 + y^x = 4}
    y=3;
    {w = x1 + y1 ^ x = 4 ^ y = 3}
```


Useful example: swap

- Swap contents
- Give a name to initial contents so we can refer to them in the post-condition
- Just in the formulas: these "names" are not in the program
- Use these extra variables to avoid "forgetting" "connections"

$$
\begin{aligned}
& \left\{x=x _p r e \wedge y=y _p r e\right\} \\
& \text { tmp }=x ; \\
& \left\{x=x _p r e \wedge y=y _p r e \wedge \text { tmp }=x\right\} \\
& x=y ; \\
& \left\{x=y \wedge y=y _p r e \wedge \text { tmp=x_pre }\right\} \\
& y=\text { tmp; } \\
& \left\{x=y _p r e \wedge y=\text { tmp } \wedge \text { tmp=x_pre }\right\}
\end{aligned}
$$

