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Goal: get a better understanding about how the OS and C libraries interact for file I/O and 
system calls plus where/when buffering happens, what’s a file, etc. 
 
Disclaimer: this is conceptually on target, but detailed implementation is likely different and/or 
more complex. 
 
What’s on disk 
 
What’s a file?  First approximation is a sequence of 4K blocks of bytes + metadata.  Individual 
file is represented by an inode that points to the blocks and contains owner info, etc. 
 
Directories: special files in the file system that point to other directories and to inodes of files in 
those directories.  This graph forms a DAG starting at / (i.e., cycles make no sense and are not 
allowed). 
 
POSIX (OS level) I/O 
 
Walk through what happens when a user process does I/O directly through the OS open / read 
/ write / close interface.  No user-level buffering. 
 
Linux Kernel data structures: 
 
Process table.  Global table with one entry for each process in the system. 
 

• Each process table entry contains (or points to) a process-unique table of file descriptors 
used by that process.  For each open file there is a pointer from the fd entry to the 
system-wide file table entry for that file 

 
File table.  Global table with one entry for each file currently open by some process.  If more 
than one process has the same file open, there is a separate entry in this table for each process 
unless the process cloned or duped the file descriptor, in which case those descriptors point to 
the same file table entry. 
 

• File table entry contains information about the current offset in the file for this process 
and a pointer to the actual file data with inode information, etc. read from disk 
(oversimplified, but roughly correct).   

 
Buffer cache.  A collection of disk-block size buffers plus identifying data.  All data read/written 
to files flows through the buffer cache. 
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Operations: 
 
fd = open(filepath, flags) 
 

• Convert filepath to an inode number (actual file on disk) by walking directory tree as 
needed.  (Much of this data is probably cached, but potentially requires one disk access 
for each directory level.) 

• Allocate a (system) file table entry and store inode information, file offset, mode, etc. 
• Allocate next available entry in process file descriptor (fd) table and initialize with 

pointer to file table entry 
• If open for writing and truncating, discard existing blocks in the file 
• Return index in process fd table as result of open system call (this fd is used in later I/O 

function calls) 
 
read(fd, buffer, size)  [ignoring eof detection for simplicity] 
 

• Use fd to retrieve file table entry for file 
• Calculate block number and offset in file 
• Find block in buffer cache.  If block is not present in the buffer cache, read from disk and 

suspend process until data available 
• Copy data from buffer cache block to user buffer and update current file read position in 

file table entry.  Repeat as needed if request spans multiple disk blocks. 
 
Notes: 

• If file system detects sequential reading, it may (probably will) read subsequent blocks 
into the buffer cache ahead of time so the data is more likely to be available 
immediately when needed by a later read operation 

• I/O requests that start on file block boundaries and have lengths that are multiples of 
the block size may be significantly more efficient than writes for partial blocks or writes 
that span block boundaries 

 
write(fd, buffer, size)   [similar to read] 
 

• Use fd to retrieve file table entry for file 
• Calculate block number and offset 
• Locate block in buffer cache 

o If block is already allocated as part of the file but not present in the buffer cache, 
read existing block from disk 

o If writing new data at end of file, allocate new empty block in buffer cache if new 
data starts a new block, otherwise read existing block where data should be 
appended 

• Write data into buffer cache 
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Buffer cache blocks containing new data will eventually be written to disk.  When? 
• Retain block in cache in case additional data is written to it soon 
• Write inactive but modified blocks to disk if running out of available space in the buffer 

cache and blocks need to be allocated for other I/O operations 
• sync() schedules all blocks containing new data to be written to disk.  Eventually.   A 

system-wide sync() is done periodically to schedule blocks with new/modified data for 
writing.  No guarantees on when the actual write is done, but it will be relatively soon.  
Leave each block in the cache even after it is written if there’s room.  This speeds up 
future access to the data if the block is used again. 

• fsync(fd) waits for all blocks with new data associated with fd to be written to disk. 
 
close(fd) 
 

• If this is the last fd referencing the system file table entry for this file, free the system 
file table entry 

• Free the fd entry in the process file descriptor table 
 
Note that this does not guarantee that dirty (modified) buffer cache blocks are written to disk 
immediately.  It also does not immediately free blocks in the cache until the space is needed for 
something else.  That will speed things up if the file is re-opened again soon by the same or 
some other process. 
 
 
Phew!  That’s a lot. 
 
But wait, there’s more…. 
 
 
Standard I/O Library (glibc stdio) 
 
Provides a portable, richer set of I/O functions – stream abstraction, formatted text I/O, 
including character <-> binary conversions, etc. 
 
Implemented on top of POSIX I/O layer in the OS, which does the actual I/O. 
 
Data structures in user address space: 
 
FILE: a struct allocated on the user process heap.  One of these per open file.  Contains system 
file descriptor (fd) number, status information, pointer to stdio (user address space) library 
buffers for this stream, current position information in the buffers and file, etc. 
 
Stdio-library managed buffers: data being read or written is accumulated here.  Allocated on 
the heap and typically the same size as disk blocks (for efficiency). 
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Buffering: 
 
Three basic options.  These control how the user-space stdio buffers are handled.  When a read 
or write is issued to the OS (POSIX) level, other buffering involving the system buffer pool, 
which is not directly visible to the user-level code, will happen, but at user level, there are these 
possibilities: 
 

• Full buffering: data is accumulated in the stdio buffers and actual I/O is done when a 
block is full (writing) or new data is needed (reading) 

• Line buffering: data is accumulated until a newline is encountered, then a read or write 
happens immediately.  Used for terminal I/O & we’ll ignore for now (look up details 
when you need them) 

• Unbuffered: Each stdio I/O operation is passed directly to the OS level immediately for 
each read or write.  Bypasses the extra user-space buffering overhead but at the 
expense of a system call on each I/O operation.  Will slow things down compared to 
buffered I/O unless the program is minimizing the number of system calls it executes in 
some way. 

 
Functions: 
 
FILE * fopen(path, mode) 
 

• Allocate a new FILE struct and stdio buffer for this stream on the heap; initialize FILE 
struct 

• Execute fd=open(path, …) to actually open the file and store returned fd in FILE struct 
• Return a pointer to the FILE struct 

 
Input operations (fgetc, fgets, fread, fscanf, etc.) 
 

• If necessary data is not available in the stdio buffer, use read(fd) to read file block(s) as 
needed from the OS into user address space.  Not needed if a partially read block is still 
available in user space and additional data can be read from there. 

• Copy/process appropriate amount of data from the user buffer and return results to 
user.  May involve converting from file characters to binary values. 

 
Output operations (fputc, fputs, fwrite, fprintf, etc.) 
 

• Do necessary conversions to characters 
• Copy data to stdio buffer.  If buffer has no more room, use write(fd) to actually write the 

data to the OS (where it probably will be buffered, then eventually written to disk) 
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fflush(FILE *f) 
 

• Force a write of all buffered data using write(fd) 
 
fclose(FILE *f) 
 

• Flush any buffered output data with write(fd) to OS/POSIX level 
• Do a close(fd) on the underlying file 
• Free all allocated user-space memory buffers and the FILE struct for this stream 

 
 
Efficiency/Performance notes 
 

• Access to data in main memory is orders of magnitude faster than if the data needs to 
be retrieved from disk.  That is the rationale behind the OS/POSIX buffer cache – keep 
active file pages in memory where the data can be accessed quickly. 

• Ordinary function calls to either user or stdio library functions are significantly faster 
than system calls.  That’s why the stdio library reads/writes entire disk blocks on each 
read/write call to the system and handles individual fread/fwrite opeations out of a local 
buffer in the user address space.  The individual fread/fwrite operations using the local 
buffer are faster than would be needed if each of those operations involved a system 
call to do a read/write directly using the OS buffer pool.  
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