
CSE333, Winter 2019L19: C++ Inheritance II, Casting

C++ Inheritance II, Casting
CSE 333 Winter 2019

Instructor: Hal Perkins

Teaching Assistants:
Alexey Beall Renshu Gu Harshita Neti
David Porter Forrest Timour Soumya Vasisht
Yifan Xu Sujie Zhou

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Administrivia
v Inheritance exercise out today, due Monday morning

v Makeup-lecture on smart pointers Monday night, 6:30 to
~7:45, ECE 125. Repeated Tuesday night, same time, in
GWN 201.
§ Everyone should have a bit of practice with this stuff, i.e., an

exercise. Will post on Monday after 1st performance. Due on ???

• (Factor in that there will be a networking exercise posted after
sections on Thur. 2/28 due the following Monday morning.)

v hw3 due next Thursday 2/28

3

CSE333, Winter 2019L19: C++ Inheritance II, Casting

HW3 Tip
v HW3 writes some pretty big index files

§ Hundreds of thousands of write operations

§ No problem for today’s fast machines and disks!!

v Except...

§ If you’re running on attu or a CSE lab linux workstation, every

write to your personal directories goes to a network file server(!)

• ∴ Lots of slow network packets vs full-speed disks — can take much

longer to write an index to a server vs. a few sec. locally (!!)

• Suggestion: write index files to /tmp/... . That’s a local scratch disk

and is very fast. But please clean up when you’re done.

4

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Lecture Outline
v C++ Inheritance

§ Static Dispatch
§ Abstract Classes
§ Constructors and Destructors
§ Assignment

v C++ Casting

v Reference: C++ Primer, Chapter 15
5

CSE333, Winter 2019L19: C++ Inheritance II, Casting

What happens if we omit “virtual”?
v By default, without virtual, methods are dispatched statically

§ At compile time, the compiler writes in a call to the address of the
class’ method in the .text segment
• Based on the compile-time visible type of the callee

§ This is different than Java

6

class Derived : public Base { ... };

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->foo();
bp->foo();
return 0;

}

Derived::foo()
...

Base::foo()
...

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Static Dispatch Example
v Removed virtual on methods:

7

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes Stock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit();

// invokes Stock::GetProfit().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s->GetProfit();

double Stock::GetMarketValue() const;
double Stock::GetProfit() const;

Stock.h

CSE333, Winter 2019L19: C++ Inheritance II, Casting

virtual is “sticky”
v If X::f() is declared virtual, then a vtable will be

created for class X and for all of its subclasses
§ The vtables will include function pointers for (the correct) f

v f() will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword
§ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code

8

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Why Not Always Use virtual?
v Two (fairly uncommon) reasons:

§ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

§ Control:

• If f() calls g() in class X and g is not virtual, we’re guaranteed to

call X::g() and not g() in some subclass

– Particularly useful for framework design

v In Java, all methods are virtual, except static class

methods, which aren’t associated with objects

v In C++ and C#, you can pick what you want

§ Omitting virtual can cause obscure bugs

9

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Mixed Dispatch Example

14

class A {
public:

void m1() { cout << "a1"; }
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1"; }
void m2() { cout << "b2"; }

};

void main(int argc,
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1(); //
a_ptr_a->m2(); //

a_ptr_b->m1(); //
a_ptr_b->m2(); //

b_ptr_b->m1(); //
b_ptr_b->m2(); //

}

mixed.cc

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Mixed Dispatch Example

15

class A {
public:
// m1 will use static dispatch
void m1() { cout << "a1, "; }
// m2 will use dynamic dispatch
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1, "; }
// m2 is still virtual by default
void m2() { cout << "b2"; }

};

void main(int argc,
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1(); // a1
a_ptr_a->m2(); // a2

a_ptr_b->m1(); // a1
a_ptr_b->m2(); // b2

b_ptr_b->m1(); // b1
b_ptr_b->m2(); // b2

}

mixed.cc

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Your Turn!
v Whose Foo() is called?

Q1 Q2
A A
B B
D D
???

17

class A {
public:

void Foo();
};

class B : public A {
public:
virtual void Foo();

};

class C : public B {
};

class D : public C {
public:
void Foo();

};

class E : public C {
};

void Bar() {
D d;
E e;
A* a_ptr = &d;
C* c_ptr = &e;

// Q1:
a_ptr->Foo();

// Q2:
c_ptr->Foo();

}

test.cc

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Abstract Classes
v Sometimes we want to include a function in a class but

only implement it in derived classes
§ In Java, we would use an abstract method
§ In C++, we use a “pure virtual” function

• Example: virtual string noise() = 0;

v A class containing any pure virtual methods is abstract
§ You can’t create instances of an abstract class
§ Extend abstract classes and override methods to use them

v A class containing only pure virtual methods is the same
as a Java interface
§ Pure type specification without implementations

virtual string noise() = 0;

18

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Lecture Outline
v C++ Inheritance

§ Static Dispatch
§ Abstract Classes
§ Constructors and Destructors
§ Assignment

v C++ Casting

v Reference: C++ Primer, Chapter 15
19

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Derived-Class Objects
v A derived object contains “subobjects” corresponding to

the data members inherited from each base class
§ No guarantees about how these are laid out in memory (not even

contiguousness between subobjects)

v Conceptual structure of DividendStock object:

members inherited
from Stock

symbol_
total_shares_
total_cost_
current_price_

members defined by
DividendStock

dividends_

20

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Constructors and Inheritance
v A derived class does not inherit the base class’

constructor
§ The derived class must have its own constructor
§ A synthesized default constructor for the derived class first

invokes the default constructor of the base class and then
initialize the derived class’ member variables
• Compiler error if the base class has no default constructor

§ The base class constructor is invoked before the constructor of
the derived class
• You can use the initialization list of the derived class to specify which

base class constructor to use

21

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Constructor Examples
class Base { // no default ctor
public:
Base(int y) : y(y) { }
int y;

};

// Compiler error when you try to
// instantiate a Der1, as the
// synthesized default ctor needs
// to invoke Base's default ctor.
class Der1 : public Base {
public:
int z;

};

class Der2 : public Base {
public:
Der2(int y, int z)

: Base(y), z(z) { }
int z;

};

badctor.cc
// has default ctor
class Base {
public:
int y;

};

// works now
class Der1 : public Base {
public:
int z;

};

// still works
class Der2 : public Base {
public:
Der2(int z) : z(z) { }
int z;

};

goodctor.cc

22

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Destructors and Inheritance
v Destructor of a derived

class:
§ First runs body of the dtor
§ Then invokes of the dtor

of the base class

v Static dispatch of
destructors is almost
always a mistake!
§ Good habit to always

define a dtor as virtual
• Empty body if there’s

no work to do

class Base {
public:
Base() { x = new int; }
~Base() { delete x; }
int* x;

};

class Der1 : public Base {
public:
Der1() { y = new int; }
~Der1() { delete y; }
int* y;

};

void foo() {
Base* b0ptr = new Base;
Base* b1ptr = new Der1;

delete b0ptr; // OK
delete b1ptr; // leaks Der1::y

}

baddtor.cc

23

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Assignment and Inheritance
v C++ allows you to assign

the value of a derived
class to an instance of
a base class
§ Known as object slicing

• It’s legal since b=d passes
type checking rules

• But b doesn’t have space
for any extra fields in d

class Base {
public:
Base(int x) : x_(x) { }
int x_;

};

class Der1 : public Base {
public:
Der1(int y) : Base(16), y_(y) { }
int y_;

};

void foo() {
Base b(1);
Der1 d(2);

d = b; // compiler error
b = d; // what happens to y_?

}

slicing.cc

24

CSE333, Winter 2019L19: C++ Inheritance II, Casting

STL and Inheritance
v Recall: STL containers store copies of values

§ What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

§ You get sliced L

25

#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> li;

li.push_back(s); // OK
li.push_back(ds); // OUCH!

return 0;
}

CSE333, Winter 2019L19: C++ Inheritance II, Casting

STL and Inheritance
v Instead, store pointers to heap-allocated objects in STL

containers
§ No slicing! J
§ sort() does the wrong thing L
§ You have to remember to delete your objects before

destroying the container L
• Smart pointers!

26

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Lecture Outline
v C++ Inheritance

§ Static Dispatch
§ Abstract Classes
§ Constructors and Destructors
§ Assignment

v C++ Casting

v Reference: C++ Primer §4.11.3, 19.2.1
27

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Explicit Casting in C
v Simple syntax: lhs = (new_type) rhs;
v Used to:

§ Convert between pointers of arbitrary type

• Don’t change the data, but treat differently

§ Forcibly convert a primitive type to another

• Actually changes the representation

v You can still use C-style casting in C++, but sometimes the
intent is not clear

28

lhs = (new_type) rhs;

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Casting in C++
v C++ provides an alternative casting style that is more

informative:
§ static_cast<to_type>(expression)

§ dynamic_cast<to_type>(expression)

§ const_cast<to_type>(expression)

§ reinterpret_cast<to_type>(expression)

v Always use these in C++ code
§ Intent is clearer
§ Easier to find in code via searching

29

CSE333, Winter 2019L19: C++ Inheritance II, Casting

static_cast

v static_cast can convert:
§ Pointers to classes of related type

• Compiler error if classes are not related
• Dangerous to cast down a class hierarchy

§ Non-pointer conversion
• e.g. float to int

v static_cast is
checked at compile time

30

class A {
public:
int x;

};

class B {
public:
float x;

};

class C : public B {
public:
char x;

};

void foo() {
B b; C c;

// compiler error
A* aptr = static_cast<A*>(&b);
// OK
B* bptr = static_cast<B*>(&c);
// compiles, but dangerous
C* cptr = static_cast<C*>(&b);

}

staticcast.cc

CSE333, Winter 2019L19: C++ Inheritance II, Casting

dynamic_cast

v dynamic_cast can convert:
§ Pointers to classes of related type
§ References to classes of related type

v dynamic_cast is checked at both
compile time and
run time
§ Casts between

unrelated classes fail
at compile time

§ Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

31

void bar() {
Base b; Der1 d;

// OK (run-time check passes)
Base* bptr = dynamic_cast<Base*>(&d);
assert(bptr != nullptr);

// OK (run-time check passes)
Der1* dptr = dynamic_cast<Der1*>(bptr);
assert(dptr != nullptr);

// Run-time check fails, returns nullptr
bptr = &b;
dptr = dynamic_cast<Der1*>(bptr);
assert(dptr != nullptr);

}

dynamiccast.cc
class Base {
public:
virtual void foo() { }
float x;

};

class Der1 : public Base {
public:
char x;

};

CSE333, Winter 2019L19: C++ Inheritance II, Casting

const_cast

v const_cast adds or strips const-ness
§ Dangerous (!)

32

void foo(int* x) {
*x++;

}

void bar(const int* x) {
foo(x); // compiler error
foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {
int x = 7;
bar(&x);
return 0;

}

CSE333, Winter 2019L19: C++ Inheritance II, Casting

reinterpret_cast
v reinterpret_cast casts between incompatible types

§ Low-level reinterpretation of the bit pattern

§ e.g. storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough

§ Converting between incompatible pointers

• Dangerous (!)
• This is used (carefully) in hw3

33

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Implicit Conversion
v The compiler tries to infer some kinds of conversions

§ When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

34

void bar(std::string x);

void foo() {
int x = 5.7; // conversion, float -> int
bar("hi"); // conversion, (const char*) -> string
char c = x; // conversion, int -> char

}

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Sneaky Implicit Conversions
v (const char*) to string conversion?

§ If a class has a constructor with a single parameter, the compiler
will exploit it to perform implicit conversions

§ At most, one user-defined implicit conversion will happen
• Can do int→ Foo, but not int→ Foo→ Baz

35

class Foo {
public:
Foo(int x) : x(x) { }
int x;

};

int Bar(Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // equivalent to return Bar(Foo(5));

}

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Avoiding Sneaky Implicits
v Declare one-argument constructors as explicit if you

want to disable them from being used as an implicit
conversion path
§ Usually a good idea

36

class Foo {
public:
explicit Foo(int x) : x(x) { }
int x;

};

int Bar(Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error

}

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Extra Exercise #1
v Design a class hierarchy to represent shapes

§ e.g. Circle, Triangle, Square

v Implement methods that:
§ Construct shapes
§ Move a shape (i.e. add (x,y) to the shape position)
§ Returns the centroid of the shape
§ Returns the area of the shape
§ Print(), which prints out the details of a shape

37

CSE333, Winter 2019L19: C++ Inheritance II, Casting

Extra Exercise #2
v Implement a program that uses Extra Exercise #1 (shapes

class hierarchy):
§ Constructs a vector of shapes
§ Sorts the vector according to the area of the shape
§ Prints out each member of the vector

v Notes:
§ Avoid slicing!
§ Make sure the sorting works properly!

38

