
CSE333, Winter 2019L17: References Revisited

References Revisited
CSE 333 Winter 2019

Instructor: Hal Perkins

Teaching Assistants:
Alexey Beall Renshu Gu Harshita Neti

David Porter Forrest Timour Soumya Vasisht

Yifan Xu Sujie Zhou

CSE333, Winter 2019L17: References Revisited

Administrivia
v No exercise due Friday. Next exercise out today after

midterm, due Wednesday before class (STL map exercise)
v Midterm: Friday in class

§ Closed book, no notes
§ Old exams and topic list on the course web now

• Everything up through C++ classes, dynamic memory, templates & STL
(vectors only– not map and others)

§ Review in sections tomorrow

v Homework 3 – spec out now, files pushed by Friday
§ Spec overview & demo in class today

v Missed classes (especially smart pointers) – can we
schedule a make-up lecture? When?

2

CSE333, Winter 2019L17: References Revisited

Discussion group and email hints
v Please send any necessary email to cse333-staff[at]cs, not

to individual TAs/instructor

Please help your readers (both for cse333 and elsewhere):

v Use descriptive titles and provide enough context in the

question so readers don’t need to go on a treasure hunt

v Please don’t post screenshots of text

§ Hard to read and/or require opening an extra window

§ If it’s text, copy and paste the text(!) (drag to select in terminal or

dialog boxes)

§ Images are fine if they actually are relevant to the posting

v Your readers thank you for your help !

3

CSE333, Winter 2019L17: References Revisited

∃ Confusion About References
v When should they be used?

§ Particularly with parameters and return values

v When can using them cause trouble?

4

CSE333, Winter 2019L17: References Revisited

The Plan…
v We’ll go through a bunch of code examples
v For each example, we want to decide if it is appropriate to

use references, and then chose one answer from this list:
A. We must NOT use a reference
B. It’s OK but discouraged to use a reference
C. It’s OK and encouraged to use a reference
D. We must use a reference
E. We’re lost…

5

CSE333, Winter 2019L17: References Revisited

Parameters 1
#include <cstdlib>
#include <iostream>

using namespace std;

// SHOULD WE BE USING REFERENCES FOR PARAMETERS "a" AND "b"?
// (Answer: ?)
int LeastCommonMultiple(const int &a, const int &b) {

for (int n=1; ; n++) {
if ((n % a == 0) && (n % b == 0))

return n;
}

}

int main(int argc, char **argv) {
int x = 12, y = 14;

int lcm = LeastCommonMultiple(x, y);
cout << "LCM(" << x << "," << y << ") is " << lcm << endl;
return EXIT_SUCCESS;

}

6

param1.cc

CSE333, Winter 2019L17: References Revisited

param1.cc
v B. It’s OK but discouraged to use a reference

§ A const reference to a small primitive type (e.g. int, float)

§ We aren’t changing the argument values (const), so it doesn’t

matter if we use a copy or not – reference is optional
§ Correct behavior, but might have better performance with regular

call-by-value

7

CSE333, Winter 2019L17: References Revisited

Parameters 2
#include <cmath>
#include <cstdlib>
#include <iostream>

#include "ThreeDPoint.h"

// SHOULD WE BE USING REFERENCES FOR PARAMETERS "a" AND "b"?
// (Answer: ?)
double Distance(const ThreeDPoint &a, const ThreeDPoint &b) {

double dist = pow(a.x-b.x,2) + pow(a.y-b.y,2) + pow(a.z-b.z,2);
return sqrt(dist);

}

int main(int argc, char **argv) {
ThreeDPoint a(1,2,3), b(4,5,6);

int dist = Distance(a, b);
cout << "Distance(a,b) is " << dist << endl;
return EXIT_SUCCESS;

}

8

param2.cc

CSE333, Winter 2019L17: References Revisited

param2.cc
v C. It’s OK and encouraged to use a reference

§ A const reference to a complex type (e.g. struct, object instance)
§ We aren’t changing the argument values (const), so it doesn’t

matter if we use a copy or not – reference is optional
§ Correct behavior and likely performance benefit from not having

to copy

v Follow-up: Why not pass in a pointer instead?

9

CSE333, Winter 2019L17: References Revisited

Return Value 1
#include <cstdlib>
#include <iostream>

typedef struct Point_st {
double x, y, z;

} Point;

// SHOULD WE BE USING A REFERENCE FOR THE RETURN VALUE?
// (Answer: ?)
Point &MakePoint(const int x, const int y, const int z) {

Point retval = {x, y, z};
return retval;

}

int main(int argc, char **argv) {
Point p = MakePoint(1, 2, 3);
std::cout << p.x << "," << p.y << "," << p.z << std::endl;
return EXIT_SUCCESS;

}

10

ret1.cc

CSE333, Winter 2019L17: References Revisited

ret1.cc
v A. We must NOT use a reference

§ A reference to a stack-allocated complex type
§ Never return a reference (or pointer to) a local variable

• Also, destructor is called on object when returning

11

CSE333, Winter 2019L17: References Revisited

Copy Constructor
#ifndef _COMPLEX_H_
#define _COMPLEX_H_

#include <iostream>

namespace complex {

class Complex {
public:
// Copy constructor -- should we pass a reference or not?
// (Answer: ?)
Complex(const Complex ©me) {

real_ = copyme.real_;
imag_ = copyme.image_;

}

private:
double real_, imag_;

}; // class Complex

} // namespace complex

#endif // _COMPLEX_H_
12

Complex1.h

CSE333, Winter 2019L17: References Revisited

Complex1.h

v D. We must use a reference
§ A const reference to a complex type
§ We aren’t changing the argument’s values so it doesn’t matter if

we use a copy or not, in theory
§ A copy constructor must take a reference, otherwise it would

need to call itself to make a (call-by-value) copy of the argument…

13

CSE333, Winter 2019L17: References Revisited

operator+
#include <iostream>

namespace complex {

class Complex {
public:
// Should operator+ return a reference or not?
// (Answer: ?)
Complex &operator+(const Complex &a) const {

Complex tmp(0,0);
tmp.real_ = this->real_ + a.real_;
tmp.imag_ = this->imag_ + a.imag_;
return tmp;

}

private:
double real_, imag_;

}; // class Complex

} // namespace complex

14

Complex2.h

CSE333, Winter 2019L17: References Revisited

Complex2.h

v A. We must NOT use a reference
§ A reference to a stack-allocated variable

§ Never return a reference (or pointer to) a local variable

• Destructor is also called on object when returning

v Follow-up: If we fix the code, does chaining work?

15

CSE333, Winter 2019L17: References Revisited

Assignment Operator
#include <iostream>

namespace complex {

class Complex {
public:
// Should the assignment operator return a reference?
// (Answer: ?)
Complex &operator=(const Complex &a) {

if (this != &a) {
this->real_ = a.real_;
this->imag_ = a.imag_;

}
return *this;

}

private:
double real_, imag_;

}; // class Complex

} // namespace complex

16

Complex3.h

CSE333, Winter 2019L17: References Revisited

Complex3.h

v D. We must use a reference
§ A reference to *this, the object this method was called on

§ All of the “work” is done in the method body; the return value is
only there for chaining (but required for chaining to work
correctly)

v Follow-up: What happens in (a = b) = c; if we don’t
use a reference?
§ Does it compile?

§ Does it “work”?

§ Does it do the “right thing”?

17

CSE333, Winter 2019L17: References Revisited

operator+=
#include <iostream>

namespace complex {

class Complex {
public:
// Should += return a reference?
// (Answer: ?)
Complex &operator+=(const Complex &a) {

this->real_ += a.real_;
this->imag_ += a.imag_;
return *this;

}

private:
double real_, imag_;

}; // class Complex

} // namespace complex

18

Complex4.h

CSE333, Winter 2019L17: References Revisited

Complex4.h

v D. We must use a reference
§ A reference to *this, the object this method was called on

§ All of the “work” is done in the method body; the return value is

only there for chaining (but required for chaining to work

correctly)

§ You hardly see people chain +=, but it is allowed by the primitive

data types, so we follow suit

• Style/code quality: overloaded operators should have similar

semantics to basic definitions to avoid programmer surprises

19

CSE333, Winter 2019L17: References Revisited

operator<<
#include <iostream>

namespace complex {

class Complex {
public:
double real() const { return real_; };
double imag() const { return imag_; };

private:
double real_, imag_;

}; // class Complex

} // namespace complex

// Should operator<< return a reference?
// (Answer: ?)
std::ostream &operator<<(std::ostream &out,

const complex::Complex &a) {
out << "(" << a.real() << " + " << a.imag() << "i)";
return out;

}

20

Complex5.h

CSE333, Winter 2019L17: References Revisited

Complex5.h

v D. We must use a reference
§ A reference to out, the ostream object provided as an reference

argument

§ The return value is only there for chaining (but required for
chaining to work correctly)

§ Copying of streams is disallowed (and doesn’t make sense)

21

