CSE333, Winter 2019

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Intro to File 1/0, System Calls
CSE 333 Winter 2019

Instructor: Hal Perkins

Teaching Assistants:
Alexey Beall Renshu Gu Harshita Neti

David Porter Forrest Timour Soumya Vasisht

Yifan Xu Sujie Zhou

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Administrivia

% |/O and System Calls

" Essential material for next part of the project (hw2)

= Exercise 6 out today, due Wednesday morning 1/23

+» No class Monday — MLK day

— Exercise 5 due Wed. instead of Mon.

<+ Homework 1 due Thursday (1/24) at 11 pm
= Submit via GitLab (i.e., commit/push changes, then push tag)

= No exercise due Friday 1/25! Exercise 7 will be released on
Thursday, due following Monday

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Exercise Grading

+ Problem: how to preserve basic 0,1,2,3 scoring but give
more detailed feedback

+ Imperfect solution (that we’re using)

" Qverall scoreis given by a -0, -1, -2, -3 ... item (exceptional=3,
fine=2, serious problems=1, hmmmm....=0)

= Specific notes/reasons are additional items with -0 score attached

+~ Regrades / questions

" Probably best to use Gradescope’s regrade button, although
guestions to staff email list are sometimes more appropriate

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Lecture Outline

+ File 1/0 with the C standard library
+» System Calls

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Remember This Picture?

A brief
diversion...

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

File 1/O

« We'll start by using C’s standard library

" These functions are part of glibc on Linux

" They are implemented using Linux system calls

C's stdio defines the notion of a stream

= A way of reading or writing a sequence of characters to and from
a device

Can be either text or binary; Linux does not distinguish
Is buffered by default; 1ibc reads ahead of your program
Three streams provided by default: stdin, stdout, stderr

- You can open additional streams to read and write to files

C streams are manipulated with a FILE* pointer, which is
defined in stdio.h

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

C Stream Functions

+» Some stream functions (complete list in stdio.h):

" [FILE* fopen (filename, mode) ;]
- Opens a stream to the specified file in specified file access mode

I[int fclose(stream);]

- Closes the specified stream (and file)

-[int fprintf (stream, format, ...);]
- Writes a formatted C string
— printf (...); isequivalentto fprintf (stdout, ...);
-[int fscanf (stream, format, ...);]

- Reads data and stores data matching the format string

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

C Stream Functions

+» Some stream functions (complete list in stdio.h):

-[FILE* fopen (filename, mode);]

- Opens a stream to the specified file in specified file access mode

I[int fclose(stream);]

- Closes the specified stream (and file)

'[size_t fwrite (ptr, size, count, stream);]

- Writes an array of count elements of size bytes from ptr to stream

'[size_t fread (ptr, size, count, stream);]

- Reads an array of count elements of size bytes from stream to ptr

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Error Checking/Handling

+» Some error functions (complete listin stdio.h):

-[void perror(message);]

- Prints message and error message related to errno to stderr

-[int ferror(stream);]

- Checks if the error indicator associated with the specified stream is
set

. [int clearerr (stream) ;]

- Resets error and eof indicators for the specified stream

10

C Streams Example

cp_example.c

[#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char** argv) {
FILE *fin, *fout;
char readbuf [READBUFSIZE];
size t readlen;

}

// Open the input file
fin = fopen(argv[1l], "rb"™); // "rb" -> read, binary mode
if (fin == NULL) {
fprintf (stderr, "%s -- ", argvl([l]);
perror ("fopen for read failed");
return EXIT FAILURE;
}

1f (argc !'= 3) {
fprintf (stderr, "usage: ./cp example infile outfile\n");
return EXIT FAILURE; // defined in stdlib.h

\

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

11

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

C Streams Example

cp_example.c
-

int main(int argc, char** argv) {)

// previous slide’s code

// Open the output file
fout = fopen(argv(2], "wb"); // "wb" -> write, binary mode
if (fout == NULL) {
fprintf (stderr, "%s -- ", argvl([?]);
perror ("fopen for write failed");
return EXIT FAILURE;
}

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
1f (fwrite (readbuf, 1, readlen, fout) < readlen) {
perror ("fwrite failed");
return EXIT FAILURE;

// next slide’s code

LO8: File I/0, System Calls

CSE333, Winter 2019

W UNIVERSITY of WASHINGTON

C Streams Example
cp_example.c

-~

int main(int argc, char** argv) {
// Slide 7’s code

// Slide 8’s code
// Test to see if we encountered an error while reading

1f (ferror (fin)) {
perror ("fread failed");
return EXIT FATILURE;

}

fclose (fin);
fclose (fout) ;

return EXIT SUCCESS;

13

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Buffering

+ By default, stdio uses buffering for streams:

= Data written by fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= As some point, the buffer will be “drained” into the destination:
- When you explicitly call ££1ush () on the stream
- When the buffer size is exceeded (often 1024 or 4096 bytes)

- For stdout to console, when a newline is written (“/line buffered”) or
when some other function tries to read from the console

-« Whenyou call fclose () on the stream

- When your process exits gracefully (exit () or return from
main ())

14

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Buffering Issues

+» What happens if...

" Your computer loses power before the buffer is flushed?

" Your program assumes data is written to a file and signals another
program to read it?

+» Performance implications:

= Data is copied into the stdio buffer
- Consumes CPU cycles and memory bandwidth

- Can potentially slow down high-performance applications, like a web
server or database (“zero-copy”)

15

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Buffering Issue Solutions

« Turn off buffering with setbuf (stream, NULL)

" Unfortunately, this may also cause performance problems

- e.g. if your program does many small fwrite () s, each one will now
trigger a system call into the Linux kernel

+ Use a different set of system calls

= POSIX (OS layer) provides open (), read (), write (),
close (), etc.

- No buffering is done at the user level

+» But... what about the layers below?
" The OS caches disk reads and writes in the FS buffer cache

® Disk controllers have caches too!

16

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Lecture Outline

+ File 1/0 with the C standard library
+» System Calls

17

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

What’s an OS?

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

18

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

CSE333, Winter 2019

What’s an OS?

« Software that:

" Directly interacts with the hardware
- OSis trusted to do so; user-level programs are not

- OS must be ported to new hardware; user-level programs are
portable

" Manages (allocates, schedules, protects) hardware resources

- Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

= Abstracts away messy hardware devices

- Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)

19

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

OS: Abstraction Provider

+» The OS is the “layer below”

" A module that your program can call (with system calls)
" Provides a powerful OS APl — POSIX, Windows, etc.

a process running File System
your program * open(), read(), write(), close(), ...

Network Stack
e connect(), listen(), read(), write(), ...

Virtual Memory
* brk(), shm_open(), ...

Process Management
« fork(), wait(), nice(), ...

&
Q
o+
()]
>
(V)
<
G

network stack
virtual memory
process mgmt.

20

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

OS: Protection System

+ OS isolates process from each other

= But permits controlled sharing between them
- Through shared name spaces (e.g. file names)

+ OS isolates itself from processes

= Must prevent processes from accessing the
hardware directly

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

« OSis allowed to access the hardware

OS
= User-level processes run with the CPU (trusted)

(processor) in unprivileged mode

®= The OS runs with the CPU in privileged mode
= User-level processes invoke system calls to HW (trusted)
safely enter the OS

21

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

System Call Trace

A CPU (thread of
execution) is running user-
level code in Process A;
the CPU is set to
unprivileged mode.

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

A

OS
(trusted)

22

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

System Call Trace

Code in Process A invokes
a system call; the
hardware then sets the
CPU to privileged mode
and traps into the OS,
which invokes the
appropriate system call
handler.

system call

éa
0
3
DN

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

OS
(trusted)

23

CSE333, Winter 2019

W UNIVERSITY of WASHINGTON : File I/O, System Calls CSE333, Winter 2019

System Call Trace

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

to use privileged 0OS
instructions that interact (trusted)
directly with hardware
devices like disks. VAN A SRV AN A

HW (trusted)

24

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

System Call Trace

Once the OS has finished
servicing the system call,
which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

system call return

OS

(2) Returns out of the system (trusted)

call back to the user-level code

in Process A.
HW (trusted)

25

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

System Call Trace

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

The process continues
executing whatever
code is next after the
system call invocation. 0S

(trusted)

Useful reference: HW (trusted)
CSPP § 8.1-8.3

(the 351 book)

A

26

CSE333, Winter 2019

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

% A more accurate picture:

= Consider a typical Linux process

® |ts thread of execution can be in one
of several places:

In your program’s code

In glibc, a shared library containing
the C standard library, POSIX,
support, and more

In the Linux architecture-independent
code

In Linux x86-64 code

Your program

C standard
library

glibc

Linux
system calls

architecture-independent code

architecture-dependent code

Linux kernel

27

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

+» Some routines your program
invokes may be entirely handled

by glibc without involving the
kernel

" e.g.strcmp () fromstdio.h

" There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)

- But after symbols are resolved,
invoking glibc routines is basically

as fast as a function call within your
program itself!

CSE333, Winter 2019

C standard
library

glibc

architecture-dependent code

Linux kernel

28

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

+» Some routines may be handled
by glibc, but they in turn
invoke Linux system calls

= e.g. POSIX wrappers around Linux
syscalls

« POSIX readdir () invokes the
underlying Linux readdir ()

" e.g. C stdio functions that read
and write from files

- fopen (), fclose (), fprintf ()
invoke underlying Linux open (),
close (),write (), etc.

CSE333, Winter 2019

C standard
library

glibc

architecture-dependent code

Linux kernel

29

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

+ Your program can choose to
directly invoke Linux system calls
as well

= Nothing is forcing you to link with
glibc and use it

= But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties

CSE333, Winter 2019

Your program

C standard
library

glibc

architecture-dependent code

Linux kernel

30

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

+ Let’s walk through how a Linux
system call actually works

= We'll assume 32-bit x86 using the
modern SYSENTER / SYSEXIT x86
instructions

- X86-64 code is similar, though details
always change over time, so take this

as an example — not a debugging
guide

CSE333, Winter 2019

Your program

C standard
library

glibc

architecture-dependent code

Linux kernel

31

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Details on x86/Linux

OXFFFFFFFF

Your program
Remember our
process address

space picture? C standard
library

glibc

" Let’s add some
details:

architecture-independent code

architecture-dependent code

Linux kernel

CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

OXFFFFFFFF

Process is executing your
program code

IR

0x00000000

CSE333, Winter 2019

Your program

C standard
library

glibc

architecture-independent code

architecture-dependent code

Linux kernel

unpriv CPU

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

CSE333, Winter 2019

Details on x86/Linux

OXFFFFFFFF

Your program
Process calls into a

glibc function

" e.g. fopen()
= We'llignore the
messy details of .
>y el glibc
loading/linking
shared libraries

C standard
library %
architecture-independent code

architecture-dependent code

Linux kernel

unpriv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Details on x86/Linux

OXFFFFFFFF

Your program

B

glibc begins the process
of invoking a Linux system

call
C standard %

" glibc’s library
fopen () likely gp
invokes Linux’s

open () system

call

glibc

® Puts the system call #
and arguments into architecture-independent code

registers

= Uses the call x86
instruction to call into architecture-dependent code
the routine
__kernel vsyscall
located in 1inux- unpriv CPU

gate.so 0x00000000 35

Linux kernel

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Details on x86/Linux

OXFFFFFFFF Your program
IR
linux-gate.soisa
vdso
C standard
= Avirtual library %

dynamically-linked SP
shared
object

glibc

Is a kernel-provided
shared library that is
plunked into a process’
address space

architecture-independent code

Provides the intricate
machine code needed to architecture-dependent code

trigger a system call Linux kernel

unpriv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Details on x86/Linux

OXFFFEFFFF Your program

linux—-gate.so
eventually invokes P
the SYSENTER x86

instruction

C standard
library

glibc

" SYSENTER is x86’s “fast
system call” instruction

« Causes the CPU to raise
its privilege level

« Traps into the Linux
kernel by changing the architecture-independent code

SP, IP to a previously-
determined location

- Changes some
segmentation-related
registers (see CSE451)

%architectu re-dependent code

Linux kernel

CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

Details on x86/Linux

The kernel begins

executing code at P
the SYSENTER

entry point

" |sin the architecture-
dependent part of Linux

" |t'sjobis to:

OXFFFFFFFF

Your program

C standard
library

glibc

Look up the system call

number in a system call %
dispatch table architecture-independent code

Call into the address
stored in that table entry;

this is Linux’s system call architecture-dependent code
handler

— Foropen (), the Linux kernel

handler is named
sys_open, and is

CPU

system call #5 0x00000000 38

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

The system call
handler executes P

Details on x86/Linux

OXFFFFFFFF

Your program

What it does is

- C standard
system-call specific

library
It may take a long time to

execute, especially if it
has to interact with
hardware

glibc

« Linux may choose to %
context switch the CPU architecture-independent code
to a different runnable
process

architecture-dependent code

Linux kernel

CPU

0x00000000

CSE333, Winter 2019

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

OXFFFFFFFF

Your program

Eventually, the
system call handler P
finishes

C standard
= Returns back to the library

system call entry point .
glibc

« Places the system call’s
return value in the
appropriate register

« Calls SYSEXIT to return
to the user-level code architecture-independent code

%architectu re-dependent code

Linux kernel

CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

SYSEXIT transitions the
processor back to user-
mode code

Details on x86/Linux

OXFFFFFFFF

Your program

Restores the
IP, SP to S|P
user-land values

Sets the CPU

back to I»
unprivileged mode

C standard
library %

glibc

Changes some architecture-independent code

segmentation-related

registers (see CSE451)

Returns the processor architecture-dependent code

back to glibc Linux kernel

unpriv CPU

0x00000000

CSE333, Winter 2019

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

OXFFFFFFFF

Your program

glibc continues to

execute
" Might execute more . ord
standar
system calls library
= Eventually SE

glibc

returns back to
your program code

architecture-independent code

architecture-dependent code

Linux kernel

I
unpriv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File I/0, System Calls CSE333, Winter 2019

strace

« A useful Linux utility that shows the sequence of system
calls that a process makes:

bash$ strace 1ls 2>&1 | less

execve ("/usr/bin/1s", ["1s"], [/* 41 vars */]) =

brk (NULL) = 0x15aa000

mmap (NULL, 409¢, PROT READ|PROT WRITE, MAP PRIVATE|MAP ANONYMOUS, -1,
0x7£03bb741000

access ("/etc/ld.so.preload", R _OK) = -1 ENOENT (No such file or directory)

open ("/etc/ld.so.cache", O RDONLY|O CLOEXEC) = 3

fstat (3, {st mode=S IFREG|0644, st size=126570, ...}) =0

mmap (NULL, 126570, PROT READ, MAP PRIVATE, 3, 0) = 0x7£03bb722000

close (3) =

open ("/1lib64/libselinux.so.1", O RDONLY |O CLOEXEC) = 3

read (3, "\177ELF\2\1\I\N0\N0O\NO\NO\NONO\NONONO\N3\NO>\0O\N1\ONO\NON3003\0\NONONONONO" ...,
832) = 832

fstat (3, {st mode=S IFREG|0755, st size=155744, ...}) =0

mmap (NULL, 2255216, PROT READ|PROT EXEC, MAP PRIVATE|MAP DENYWRITE, 3,
0x7£03bb2£a000

mprotect (0x7£03bb31e000, 2093056, PROT NONE) =

mmap (0x7£03bb51d4000, 8192, PROT READ|PROT WRITE,
MAP PRIVATE |MAP FIXED|MAP DENYWRITE, 3, 0x23000) = 0x7f03bb51d000

etc

w UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls CSE333, Winter 2019

If You’re Curious

« Download the Linux kernel source code

*

= Available from http://www.kernel.org/

L)

*

man, section 2: Linux system calls
" man 2 1ntro

" man 2 syscalls

L)

*

man, section 3: glibc/libc library functions

" man 3 1ntro

*

+» The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

44

http://www.kernel.org/

W UNIVERSITY of WASHINGTON LO8: File I/0, System Calls CSE333, Winter 2019

Extra Exercise #1

+» Write a program that:
" Uses argc/argv to receive the name of a text file
= Reads the contents of the file a line at a time
" Parses each line, converting text intoa uint32 t

" Builds an array of the parsed uint32 t’s

= Sorts the array bash$ cat in.txt
1213

" Prints the sorted array to stdout 3231
000005
52

- bash$. 1 in.
+ Hint: use man to read about pashy . /extral in.txt
getline, sscanf, reallogc, 02

1213

and gsort 3231
bash$

45

W UNIVERSITY of WASHINGTON LO8: File I/0, System Calls CSE333, Winter 2019

Extra Exercise #2

+ Write a program that:

" Loops forever; in each loop:

- Prompt the user to 00000000

_ . 00000010
input a filename 00000020
00000030

- Reads a filename 00000040
. 00000050

from stdin 00000060
00000070

- Opens and reads 00000080
. 00000090

the file 000000a0

. etc ...

« Prints its contents
to stdout in the format shown:

= Useman toread about fgets

= QOr, if you’re more courageous, tryman 3 readline tolearn about

libreadline.a and Google to learn how to link to it
46

