Intro, C refresher CSE 333 Winter 2019

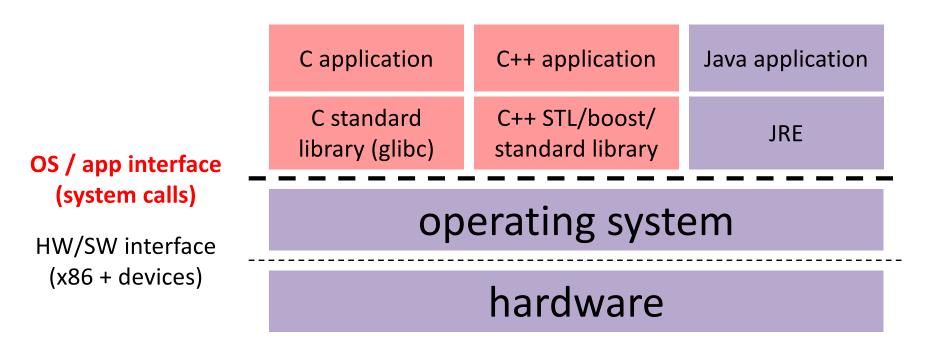
Instructor: Hal Perkins

Teaching Assistants:

Alexey Beall	Renshu Gu	Harshita Neti
David Porter	Forrest Timour	Soumya Vasisht
Yifan Xu	Sujie Zhou	

Lecture Outline

- *** Course Introduction**
- Course Policies
 - https://courses.cs.washington.edu/courses/cse333/19wi/syllabus/
- C Intro


Introductions: Course Staff

- Hal Perkins (instructor)
 - Long-time CSE faculty member and CSE 333 veteran
- TAs:
 - Alexey Beall, Renshu Gu, Harshita Neti, David Porter, Forrest Timour, Soumya Vasisht, Yifan Xu, Sujie Zhou
 - Available in section, office hours, and discussion group
 - An invaluable source of information and help
- Get to know us
 - We are here to help you succeed!

Introductions: Students

- ~125 students this quarter
 - There are no overload forms or waiting lists for CSE courses
 - Majors must add using the UW system as space becomes available
 - Non-majors should work with undergraduate advisors to handle enrollment details (over in the *new* Gates Center!)
- Expected background
 - Prereq: CSE 351 C, pointers, memory model, linker, system calls
 - CSE 391 or Linux skills needed for CSE 351 assumed

Course Map: 100,000 foot view

CPU memory storage network GPU clock audio radio peripherals

Systems Programming

- The programming skills, engineering discipline, and knowledge you need to build a system
 - Programming: C / C++
 - **Discipline:** testing, debugging, performance analysis
 - **Knowledge:** long list of interesting topics
 - Concurrency, OS interfaces and semantics, techniques for consistent data management, distributed systems algorithms, ...
 - Most important: a deep(er) understanding of the "layer below"

Discipline?!?

- Cultivate good habits, encourage clean code
 - Coding style conventions
 - Unit testing, code coverage testing, regression testing
 - Documentation (code comments, design docs)
 - Code reviews
- Will take you a lifetime to learn
 - But oh-so-important, especially for systems code
 - Avoid write-once, read-never code

Lecture Outline

Course Introduction

*** Course Policies**

- https://courses.cs.washington.edu/courses/cse333/19wi/syllabus/
- Summary here, but you *must* read the full details online
- C Intro

Communication

- Website: <u>http://cs.uw.edu/333</u>
 - Schedule, policies, materials, assignments, etc.
- Discussion: Google group linked to course home page
 - Must log in using your @uw.edu Google identity (not cse)
 - Ask and answer questions staff will monitor and contribute
- Staff mailing list: cse333-staff@cs for things not appropriate for discussion group (*not* email to instructor or individual TAs)
- Course mailing list: for announcements from staff
 - Registered students automatically subscribed with your @uw email
- Office Hours: spread throughout the week
 - Schedule posted shortly and will start this week
 - Can also e-mail to staff list to make individual appointments

Course Components

- Lectures (~28)
 - Introduce the concepts; take notes!!!
- Sections (10) Warning: rooms are likely to change
 - Applied concepts, important tools and skills for assignments, clarification of lectures, exam review and preparation
- Programming Exercises (~20)
 - Roughly one per lecture, due the morning before the next lecture
 - Coarse-grained grading (0, 1, 2, or 3)
- Programming Projects (0+4)
 - Warm-up, then 4 "homeworks" that build on each other
- Exams (2)
 - Midterm: Friday, February 15, in class
 - Final: Wednesday, March 20, 2:30-4:20

Grading

- Exercises: 25% total
 - Submitted via GradeScope (account info mailed later today)
 - Graded on correctness and style by TAs
- Projects: 40% total
 - Submitted via GitLab; must tag commit that you want graded
 - Binaries provided if you didn't get previous part working
- Exams: Midterm (15%) and Final (20%)
 - Several old exams on course website
- More details on course website
 - You must read the syllabus there you are responsible for it

Deadlines and Student Conduct

- Late policies
 - Exercises: no late submissions accepted, due 10 am
 - Projects: 4 late days for entire quarter, max 2 per project
 - Need to get things done on time difficult to catch up!
- Academic Integrity (read the full policy on the web)
 - I trust you implicitly and will follow up if that trust is violated
 - In short: don't attempt to gain credit for something you didn't do and don't help others do so either
 - This does *not* mean suffer in silence learn from the course staff and peers, talk, share ideas; *but* don't share or copy work that is supposed to be yours

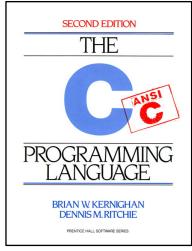
Gadgets (1)

- Gadgets reduce focus and learning
 - Bursts of info (*e.g.* emails, IMs, etc.) are *addictive*
 - Heavy multitaskers have more trouble focusing and shutting out irrelevant information
 - <u>http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away</u>
 - Seriously, you will learn more if you use paper instead!!!

Gadgets (2)

- So how should we deal with laptops/phones/etc.?
 - Just say no!
 - No open gadgets during class (really!)*
 - *Exceptions possible in cases where it actually makes sense discuss with instructor
 - Urge to search? ask a question! Everyone benefits!!
 - You may close/turn off your electronic devices now
 - Pull out a piece of paper and pen/pencil instead ③

Lecture Outline

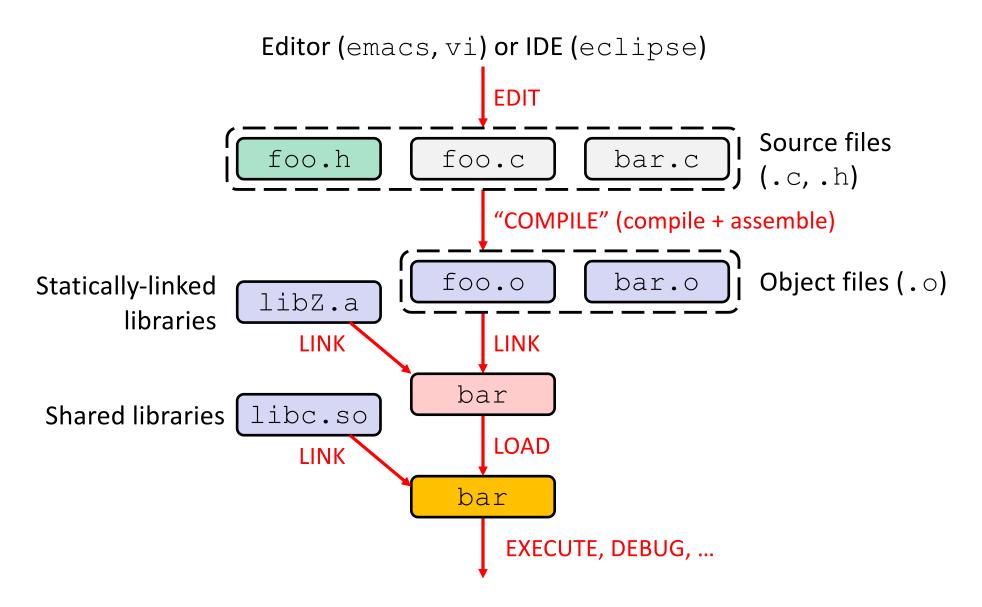

- Course Introduction
- Course Policies
 - https://courses.cs.washington.edu/courses/cse333/18sp/syllabus/
- * C Intro
 - Workflow, Variables, Functions

- Created in 1972 by Dennis Ritchie
 - Designed for creating system software
 - Portable across machine architectures
 - Most recently updated in 1999 (C99) and 2011 (C11)

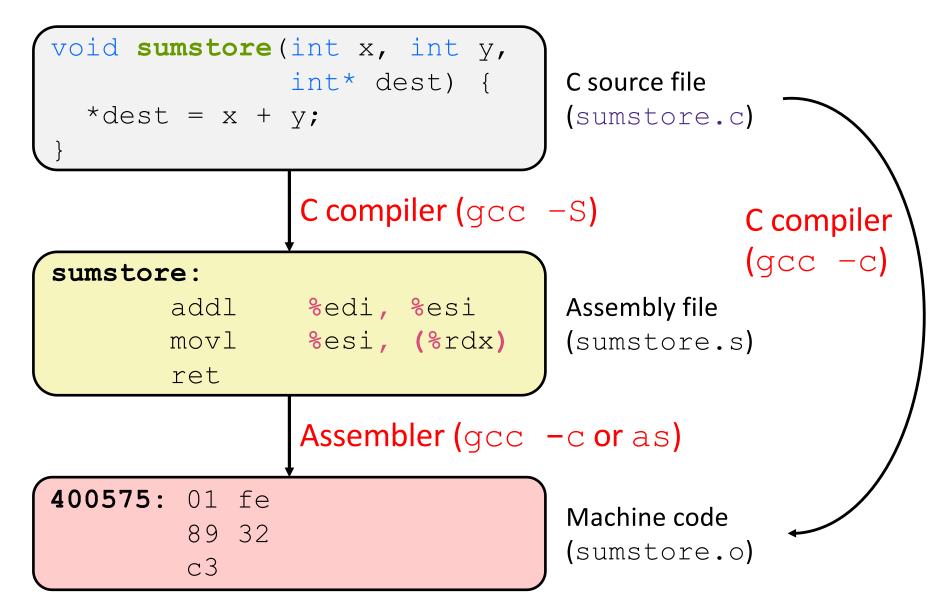
Characteristics

- "Low-level" language that allows us to exploit underlying features of the architecture – but easy to fail spectacularly (!)
- Procedural (not object-oriented)
- Typed but unsafe (possible to bypass the type system)
- Small, basic library compared to Java, C++, most others....

Generic C Program Layout


```
#include <system files>
#include "local files"
#define macro name macro expr
/* declare functions */
/* declare external variables & structs */
int main(int argc, char* argv[]) {
  /* the innards */
}
/* define other functions */
```

- C Syntax: main
- * To get command-line arguments in main, use:


int main(int argc, char* argv[])

- What does this mean?
 - argc contains the number of strings on the command line (the executable name counts as one, plus one for each argument).
 - argv is an array containing *pointers* to the arguments as strings (more on pointers later)
- ✤ Example: \$ foo hello 87
 - argc = 3
 - argv[0]="foo", argv[1]="hello", argv[2]="87"

C Workflow

C to Machine Code

When Things Go South...

- Errors and Exceptions
 - C does not have exception handling (no try/catch)
 - Errors are returned as integer error codes from functions
 - Because of this, error handling is ugly and inelegant

Crashes

 If you do something bad, you hope to get a "segmentation fault" (believe it or not, this is the "good" option)

Java vs. C (351 refresher)

- Are Java and C mostly similar (S) or significantly different
 (D) in the following categories?
 - List any differences you can recall (even if you put 'S')

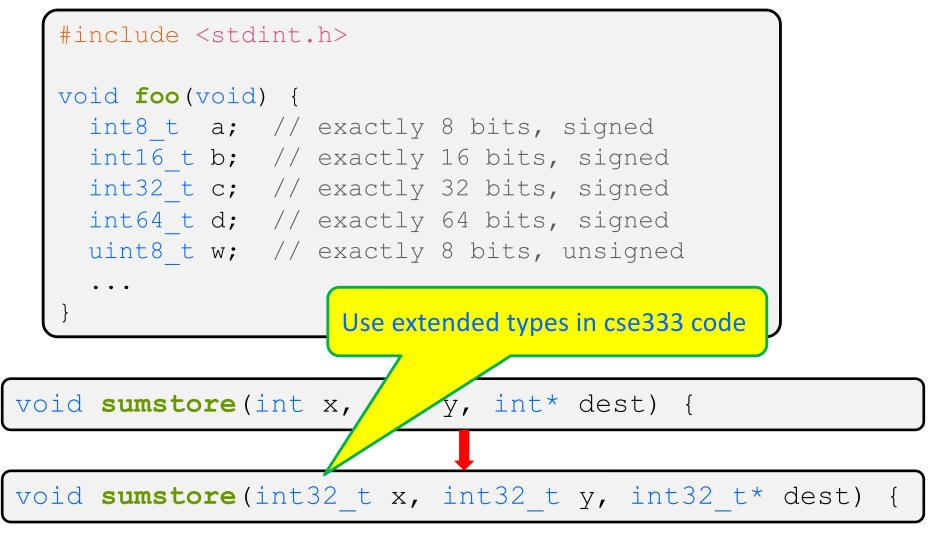
Language Feature	S/D	Differences in C
Control structures		
Primitive datatypes		
Operators		
Casting		
Arrays		
Memory management		

Java vs. C (351 refresher)

- Are Java and C mostly similar (S) or significantly different
 (D) in the following categories?
 - List any differences you can recall (even if you put 'S')

Language Feature	S/D	Differences in C
Control structures	S	
Primitive datatypes	S/D	Similar but sizes can differ (char, esp.), unsigned, no boolean, uninitialized data,
Operators	S	Java has >>>, C has ->
Casting	D	Java enforces type safety, C does not
Arrays	D	Not objects, don't know their own length, no bounds checking
Memory management	D	Manual (malloc/free), no garbage collection

Primitive Types in C


- Integer types
 - char,int
- Floating point
 - float, double
- Modifiers
 - short [int]
 - long [int, double]
 - signed [char, int]
 - unsigned [char, int]

C Data Type	32-bit	64-bit	printf
char	1	1	°₀C
short int	2	2	%hd
unsigned short int	2	2	%hu
int	4	4	%d/%i
unsigned int	4	4	°a
long int	4	8	%ld
long long int	8	8	%lld
float	4	4	%f
double	8	8	%lf
long double	12	16	%Lf
pointer	4	8	%p

Typical sizes - see sizeofs.c

C99 Extended Integer Types

Solves the conundrum of "how big is an long int?"

Basic Data Structures

- C does not support objects!!!
- Arrays are contiguous chunks of memory
 - Arrays have no methods and do not know their own length
 - Can easily run off ends of arrays in C security bugs!!!
- Strings are null-terminated char arrays
 - Strings have no methods, but string.h has helpful utilities

char* x = "hello\n";

X	h	е		-	0	\n	\0	
---	---	---	--	---	---	----	----	--

 Structs are the most object-like feature, but are just collections of fields – no "methods" or functions

Function Definitions

Generic format:

returnType fname(type param1, ..., type paramN) {
 // statements

```
// sum of integers from 1 to max
int sumTo(int max) {
    int i, sum = 0;
    for (i = 1; i <= max; i++) {
        sum += i;
    }
    return sum;
}</pre>
```

Function Ordering

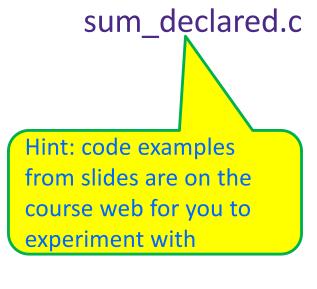
You shouldn't call a function that hasn't been declared yet

sum_badorder.c

```
#include <stdio.h>
int main(int argc, char** argv) {
  printf("sumTo(5) is: %d\n", sumTo(5));
  return 0;
// sum of integers from 1 to max
int sumTo(int max) {
  int i, sum = 0;
  for (i = 1; i <= max; i++) {</pre>
    sum += i;
  return sum;
```

Solution 1: Reverse Ordering

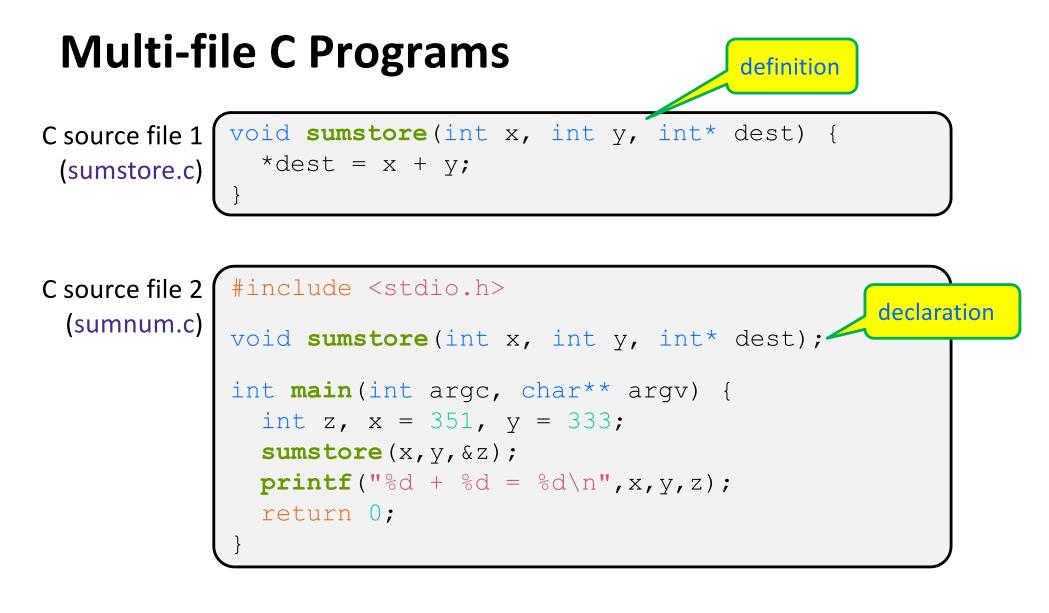
 Simple solution; however, imposes ordering restriction on writing functions (who-calls-what?)


sum_betterorder.c

```
#include <stdio.h>
// sum of integers from 1 to max
int sumTo(int max) {
  int i, sum = 0;
  for (i = 1; i <= max; i++) {</pre>
    sum += i;
  return sum;
int main(int argc, char** argv) {
  printf("sumTo(5) is: %d\n", sumTo(5));
  return 0;
```

L01: Intro, C

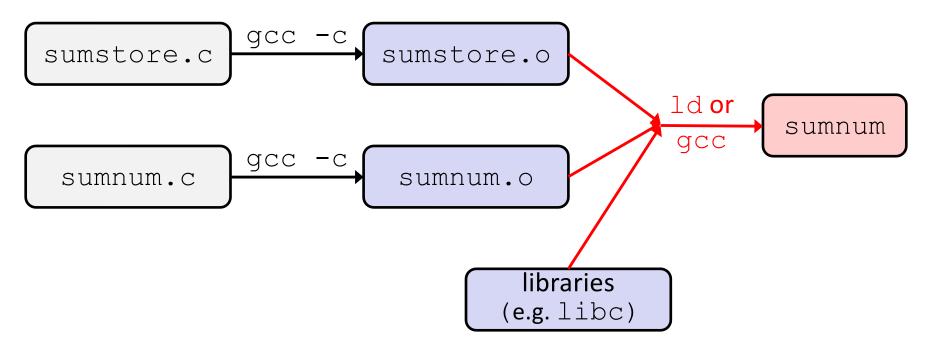
Solution 2: Function Declaration


 Teaches the compiler arguments and return types; function definitions can then be in a logical order


```
#include <stdio.h>
int sumTo(int); // func prototype
int main(int argc, char** argv) {
  printf("sumTo(5) is: %d\n", sumTo(5));
  return 0;
}
// sum of integers from 1 to max
int sumTo(int max) {
  int i, sum = 0;
  for (i = 1; i <= max; i++) {</pre>
    sum += i;
  return sum;
```

Function Declaration vs. Definition

- C/C++ make a careful distinction between these two
- Definition: the thing itself
 - *e.g.* code for function, variable definition that creates storage
 - Must be exactly one definition of each thing (no duplicates)
- Declaration: description of a thing
 - *e.g.* function prototype, external variable declaration
 - Often in header files and incorporated via #include
 - Should also #include declaration in the file with the actual
 definition to check for consistency
 - Needs to appear in all files that use that thing
 - Should appear before first use



Compile together:

\$ gcc -o sumnum sumnum.c sumstore.c

Compiling Multi-file Programs

- The linker combines multiple object files plus staticallylinked libraries to produce an executable
 - Includes many standard libraries (e.g. libc, crt1)
 - A *library* is just a pre-assembled collection of $. \circ$ files

To-do List

- Explore the website thoroughly: <u>http://cs.uw.edu/333</u>
- Computer setup: CSE lab, attu, or CSE Linux VM
- Exercise 0 is due 10am Wednesday before class
 - Find exercise spec on website, submit via Gradescope
 - Sample solution will be posted Friday after class
- Gradescope accounts created just before class
 - Userid is your uw.edu email address
 - Exercise submission: find CSE 333 19wi, click on the exercise, drag-n-drop file(s)! That's it!! Ignore any messages about autograding – we don't use that.