
 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 1 of 19

Name __ ID # ______________

There are 6 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.
If you don’t remember the exact syntax for something, make the best attempt you can.
We will make allowances when grading. Don’t be alarmed if there seems to be more
space than is needed for your answers – we tried to include more than enough blank
space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin

Score _________________ / 100

1. ______ / 22

2. ______ / 25

3. ______ / 20

4. ______ / 20

5. ______ / 12

6. ______ / 1

Note: Please write your answers only on the specified pages. Reference pages and
pages with only questions and explanations will not be scanned for grading, and you
should feel free to remove them from the exam.

There is an extra blank page after the last question at the end of the exam if you
need additional space for one or more answers. That page will be graded if it
contains answers.

There are two pages of reference information following the blank page at the end.
You may remove these pages. They will not be scanned or graded.

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 2 of 19

Question 1. (22 points) STL and C++ classes. Our friends who run the SnackOverflow
concession are writing a small program to keep track of the number of items sold. A
Sales object contains a <string, vector<int>> map, where each string is a
unique product name. The vector associated with each product name is an ordered list of
the number of copies of that item sold each time someone purchases that item. For
example, if things is an initially empty Sales object and we execute the following
statements,

 things.Add("skittles", 1);
 things.Add("chips", 2);
 things.Add("skittles", 2);
 things.Add("skittles", 1);
 things.Add("bananas", 17);
 things.Add("chips", 1);

then the Sales object things should contain the following map entries in some order:

 <"skittles", {1, 2, 1}>
 <"chips", {2, 1}>
 <"bananas", {17}>

Here is the definition of class Sales. Your job is to implement various functions on the
next page.

class Sales {
public:
 Sales() = default;
 Sales(const Sales &) = delete;
 Sales &operator=(const Sales &) = delete;

 // record a sale of num items named s
 void Add(string s, int num);

 // print product names in alphabetical order with total
 // number sold of each product using format name: total
 void PrintTotals();

private:
 map<string, vector<int>> items;

 // return sum of elements in int vector v
 int VecSum(const vector<int> &v);
}; // class Sales

Please write your answers on the next page and remove this page from the exam. This
page will not be scanned for grading.

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 3 of 19

Question 1. (cont) Provide implementations of the member functions of class Sales
below. You should assume that all headers are provided and you can assume that a
using namespace std; directive has been written already. Hints: Remember there
are two pages of reference information at the end of the exam that might be useful. Also,
the answers can be quite short – don’t be alarmed if you don’t need all this space.

(a) (7 points)

// record a sale of num items named s
void Sales::Add(string s, int num) {

}

(b) (7 points) (This is a helper function to be used in part (c). It is a private member of
the Sales class.)

// return sum of elements in int vector v
int Sales::VecSum(const vector<int> &v) {

}

(continued on next page)

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 4 of 19

Question 1. (cont.) (c) (8 points) The output of this next function should be a single line
for each product in items consisting of product name followed by a colon and a space
followed by the total number of items sold. Output should be written to cout. Items
should be printed in alphabetical order. For the sample data at the beginning of the
question, the output would be

bananas: 17
chips: 2
skittles: 4

Your solution must use the function VecSum (from part (b)) to add up the contents of
each vector when computing the total item sales for each product name.

void Sales::PrintTotals() {

}

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 5 of 19

Question 2. (25 points) Not the usual, demented, dreaded virtual function madness, but
demented, dreaded, and madness in a different way. When doing a bit of software
archeology, we’ve run across a C++ program and a diagram of the program’s memory,
including objects, vtables, and methods (functions). For this question we want to recreate
the code that produced this execution diagram.

Here is the memory diagram:

From left to right, the first column of boxes are program variables, the next column
shows C++ objects allocated on the heap (i.e., by new), the third column shows the
vtables for the various classes, and the boxes in the last column, with labels like A::m1
represent the code for individual functions (methods).

(a) (12 points) Given the diagram above, complete the source code and on the next page.
Write the necessary functions for each class and finish the initializations for each variable
shown in main.

The body of each function should print to cout its class name, followed by two colons,
followed by the function name. For example, class B’s function m1() should output
B::m1. Each variable in main should point to the appropriate object on the heap. Write
each function on a single line (e.g., void f7() {cout<<"X::f7"<< endl;},
and include virtual when appropriate.)

Remove this page from the exam, then answer questions about this code on the next
pages. Do not write anything on this page. It will not be scanned for grading.

blue

A vtbl

yellow

A::m1

B vtbl

purple

C vtbl

C::m2

B::m1

A::m2

red

B::m2

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 6 of 19

Question 2. (cont.) (a) (12 points) Complete the code below so it will produce the
diagram on the previous page when it is executed.

#include <iostream>
using namespace std;

class A {
public:

};

class B: public A {
public:

};

class C: public B {
public:

};

int main() { // don’t forget to fill in the following lines

 A *blue = _____________________________;

 B *yellow = _____________________________;

 C *purple = _____________________________;

 B *red = _____________________________;

 /// see next part of the question for additional statements that appear here ///

 return EXIT_SUCCESS;
}

(continued on next page)

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 7 of 19

Question 2. (cont.) (b) (7 points) Now, using the code you wrote in the previous part of
the question, determine the output produced by each of the following function calls if that
function call is written in the main function by itself right before the “return
EXIT_SUCCESS;” line at the end. If there is some sort of an error and the call would
not produce any output, write either “compile error” or “runtime error” as appropriate to
indicate the problem.

(i) blue->m1();

(ii) blue->m2();

(iii) yellow->m2();

(iv) blue->m3();

(v) purple->m1();

(vi) purple->m2();

(vii) red->m1();

(c) (6 points) Now suppose we go back through the code in part (a) and remove the
keyword virtual everywhere it appears in the code. How would your answers to part
(b) change, if at all? If there are any changes, which function call(s) would produce a
different result, and what would the new result(s) be? If there are no changes, say so.

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 8 of 19

Question 3. (20 points) Networking. The following code is supposed to set up a small
network server, listen for a client to connect, and then call HandleClient (not
provided) to communicate with the client over the socket. The argument to the server
program is the port number to use. Take a look at the code below and on the next pages,
then answer the questions about it on the following page. There are bugs!

// Local function declarations
void Usage(char *progname);
int Listen(char *portnum, int *sock_family);
void HandleClient(int c_fd, struct sockaddr *addr,size_t addrlen,
 int sock_family);

int main(int argc, char **argv) {
 // Expect the port number as a command line argument.
 if (argc != 2) {
 Usage(argv[0]);
 }

 int sock_family;
 int SOME_FD = Listen(argv[1], &sock_family);
 if (SOME_FD <= 0) {
 return EXIT_FAILURE;
 }

 while (1) {
 struct sockaddr_storage caddr;
 socklen_t caddr_len = sizeof(caddr);
 int ANOTHER_FD = accept(SOME_FD,
 reinterpret_cast<struct sockaddr*>(&caddr),
 &caddr_len);
 if (ANOTHER_FD < 0) {
 if ((errno == EINTR) || (errno == EAGAIN) ||
 (errno == EWOULDBLOCK))
 continue;
 break;
 }

 HandleClient(SOME_FD,
 reinterpret_cast<struct sockaddr *>(&caddr),
 caddr_len,
 sock_family);
 }

 // Close up shop.
 close(SOME_FD);
 return EXIT_SUCCESS;
}

Remove this page from the exam, then continue on the next pages. Do not write
anything on this page. It will not be scanned for grading.

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 9 of 19

Question 3. (cont.) More code for this problem, continued from previous page.

int Listen(char *portnum, int *sock_family) {
 // Populate the "hints" addrinfo structure for getaddrinfo().
 struct addrinfo hints;
 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_family = AF_INET6; // IPv6 (also handles IPv4)
 hints.ai_socktype = SOCK_STREAM; // stream
 hints.ai_flags = AI_PASSIVE; // use wildcard "in6addr_any"
 hints.ai_flags |= AI_V4MAPPED; // use v4-mapped v6 if no v6
 hints.ai_protocol = IPPROTO_TCP; // tcp protocol
 hints.ai_canonname = nullptr;
 hints.ai_addr = nullptr;
 hints.ai_next = nullptr;

 struct addrinfo *result;
 int res = getaddrinfo(nullptr, portnum, &hints, &result);

 // Did addrinfo() fail?
 if (res != 0) {
 return -1;
 }

 // Loop through the returned address structures until we are
 // able to create a socket and bind to one. The address
 // structures are linked in a list through the "ai_next" field
 // of result.
 int listen_fd = -1;
 struct addrinfo *rp;
 for (rp = result; rp != nullptr; rp = rp->ai_next) {
 listen_fd = socket(rp->ai_family,
 rp->ai_socktype,
 rp->ai_protocol);
 if (listen_fd == -1) {
 listen_fd = -1;
 continue;
 }

 // Configure the socket;
 int optval = 1;
 setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR,
 &optval, sizeof(optval));

Remove this page from the exam, then continue on the next pages. Do not write
anything on this page. It will not be scanned for grading.

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 10 of 19

Question 3. (cont.) Last code for this problem, continued from previous page.

 // Success. Tell the OS that we want this to be a listening
 // socket.
 if (listen(listen_fd, SOMAXCONN) != 0) {
 close(listen_fd);
 break;
 }

 // It failed. Close the socket, then loop back around and
 // try the next address/port returned by getaddrinfo().
 close(listen_fd);
 listen_fd = -1;
 }

 // Free the structure returned by getaddrinfo().
 freeaddrinfo(result);

 // If we failed to bind, return failure.
 if (listen_fd == -1)
 return listen_fd;

 // Try binding the socket to the address and port number
 // returned by getaddrinfo().
 if (bind(listen_fd, rp->ai_addr, rp->ai_addrlen) == 0) {
 // Return to the caller the address family.
 *sock_family = rp->ai_family;
 }

 // Return to the client the listening file descriptor.
 return listen_fd;
}

Remove this page from the exam, then answer the questions about it on the next page.
Do not write anything on this page. It will not be scanned for grading.

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 11 of 19

Question 3. (cont.) And now for the networking question, at last. There are some bugs
in this code for you to diagnose. Definitely refer to specific parts of the code as needed
in your answers, but what you write on this page should be self-contained.

(a) (10 points) When we try to run this program using port 3333 (which is not currently in
use by any other process), we got this message:

 Couldn’t bind to any addresses.

What is causing this specific problem and how should we fix it?

(b) (10 points) After fixing the problem in part (a) we are able to run this server code and
connect to it using nc 127.0.0.1 3333. But as soon as the connection is
established, we get the following message:

[Error on client socket: Transport endpoint is not
connected]
Failure on accept: Bad file descriptor

What is causing this problem and how should we fix it?

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 12 of 19

Question 4. (20 points) Too many things at once – a question that looks a lot like a
previous one, but isn’t exactly. Consider the following small program that uses pthreads.
This does compile and execute.

#include <stdio.h>
#include <pthread.h>

int g = 0;

void * worker(void * ignore) {
 int x = 0;
 for (int k = 1; k <= 3; k++) {
 x = x + 1;
 g = g + x;
 }
 printf("x = %d, g = %d\n", x, g);
 return NULL;
}

int main() {
 pthread_t t1, t2;
 int ignore;
 ignore = pthread_create(&t1, NULL, &worker, NULL);
 ignore = pthread_create(&t2, NULL, &worker, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 printf("final g = %d\n", g);
 return 0;
}

When we run this program it starts two threads and waits for them both to finish, and then
prints the final value of the variable g. Each thread also prints the values of variables x
and g right before it terminates.

(a) (6 points) What output would this program print if instead of running the threads
concurrently, we ran thread 1 first, waited for it to terminate, then ran thread 2?

(continued on next page)

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 13 of 19

Question 4. (cont.) (b) (8 points) When the threads run concurrently, is it possible to
get different output when the program is executed repeatedly? If it is, give three possible
outputs that could be produced by the program. If there is only one or two possible
outputs, write those and indicate that they are the only possible results.

(You should assume that the statements in each individual thread are executed in the
order written, and not rearranged by the compiler or memory system to be executed out-
of-order. You should also assume that the printf calls don’t interfere with each other
and that each line of output is printed correctly and separately from other output lines. If
different executions lead to different outputs it is only because of the interaction between
the threads as they run concurrently.)

(c) (6 points) Assuming that the threads are executed concurrently, as in part (b), what
are the possible final values of global variable g? Circle all that could possibly happen
on some possible execution:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 or more

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 14 of 19

Question 5. (12 points) We know that C++ smart pointers can handle some memory
management tasks for us automatically and avoid memory leaks. However, they have to
be used properly to avoid problems.

(a) (6 points) Suppose we create a double-linked list with the following Node definition,
which uses shared_ptrs for the links.

struct Node {
 int data;
 shared_ptr<Node> next;
 shared_ptr<Node> prev;
};

We know that this will not always prevent memory leaks. Give a brief explanation or
example of why it is still possible to leak memory if we build a double-linked list out of
these nodes, assuming that we use a shared_ptr to point to the first node in a list
created from these Node structs.

(continued on next page)

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 15 of 19

Question 5. (cont.) (b) (6 points) One solution to the problem identified in part (a) is to
use weak_ptrs instead of shared_ptrs for the backward links:

struct Node {
 int data;
 shared_ptr<Node> next;
 weak_ptr<Node> prev;
};

Are we always guaranteed that any program using this Node struct will never leak
memory occupied by these Nodes provided that a shared_ptr is used to point to the
first node in a list created from these Node structs? Give a brief technical justification for
your answer

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 16 of 19

Question 6. (1 free point – all answers get the free point) Draw a picture of something
(hopefully fun) that you plan to do now that summer classes are over.

Congratulations on lots of great work this summer !!
Have a great break and say hello when you get back !

The CSE 333 staff

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 17 of 19

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 18 of 19

Reference information. Here is a collection of information that might, or might not, be
useful while taking the test. You can remove this page from the exam if you wish.

C++ strings: If s is a string, s.length() and s.size()return the number of characters in it.
Subscripts (s[i]) can be used to access individual characters.

C++ STL:

• If lst is a STL vector, then lst.begin() and lst.end() return iterator values
of type vector<...>::iterator. STL lists and sets are similar.

• A STL map is a collection of Pair objects. If p is a Pair, then p.first and
p.second denote its two components. If the Pair is stored in a map, then p.first
is the key and p.second is the associated value.

• If m is a map, m.begin() and m.end() return iterator values. For a map, these
iterators refer to the Pair objects in the map.

• If it is an iterator, then *it can be used to reference the item it currently points to, and
++it will advance it to the next item, if any.

• Some useful operations on STL containers (lists, maps, sets, etc.):
o c.clear() – remove all elements from c
o c.size() – return number of elements in c
o c.empty() – true if number of elements in c is 0, otherwise false

• Additional operations on vectors:
o c.push_back(x) – copy x to end of c

• Some additional operations on maps:
o m.insert(x) – add copy of x to m (a key-value pair for a map)
o m.count(x) – number of elements with key x in m (0 or 1)
o m[k] can be used to access the value associated with key k. If m[k] is read and

has never been accessed before, then a <key,value> Pair is added to the map
with k as the key and with a value created by the default constructor for the value
type (0 or nullptr for primitive types).

• Some additional operations on sets
o s.insert(x) – add x to s if not already present
o s.count(x) – number of copies of x in s (0 or 1)

• You may use the C++11 auto keyword, C++11-style for-loops for iterating through
containers, and any other features of standard C++11, but you are not required to do so.

 CSE 333 18su Final 2nd Exam August 17, 2018

 Page 19 of 19

More reference information. You can also remove this page if you wish.

Some POSIX I/O and TCP/IP functions:

• int accept(int sockfd, struct socckaddr *addr, socklen_t *addrlen);
• int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen)
• int close(int fd)
• int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
• int freeaddrinfo(struct addrinfo *res)
• int getaddrinfo(const char *hostname, const char *service,

 const struct addrinfo *hints, struct addrinfo **res)
o Use NULL or listening port number for second argument

• int listen(int sockfd, int backlog)
o Use SOMAXCONN for backlog

• off_t lseek(int fd, off_t offset, int whence)
o whence is one of SEEK_SET, SEEK_CUR, SEEK_END

• ssize_t read(int fd, void *buf, size_t count)
o if result is -1, errno could contain EINTR, EAGAIN, or other codes

• int socket(int domain, int type, int protocol)
o Use SOCK_STREAM for type (TCP), 0 for protocol, get domain from address

info struct (address info struct didn’t fit on this page – we’ll include it later if
needed)

• ssize_t write(int fd, const void *buf, size_t count)

Some pthread functions:

• pthread_create(thread, attr, start_routine, arg)
• pthread_exit(status)
• pthread_join(thread, value_ptr)
• pthread_cancel (thread)
• pthread_mutex_init(pthread_mutex_t * mutex, attr) // attr=NULL usually
• pthread_mutex_lock(pthread_mutex_t * mutex)
• pthread_mutex_unlock(pthread_mutex_t * mutex)
• pthread_mutex_destroy(pthread_mutex_t * mutex)

Basic C memory management functions:

• void * malloc(size_t size)
• void free(void *ptr)
• void * calloc(size_t number, size_t size)
• void * realloc(void *ptr, size_t size)

