
 CSE 333 Final Exam June 6, 2017

 Page 1 of 15

Name __ ID # ______________

There are 8 questions worth a total of 120 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.

If you don’t remember the exact syntax for something, make the best attempt you can.
We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for your answers – we
tried to include more than enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin

Score _________________ / 120

1. ______ / 24

2. ______ / 16

3. ______ / 22

4. ______ / 14

5. ______ / 14

6. ______ / 12

7. ______ /16

8. ______ /2

 CSE 333 Final Exam June 6, 2017

 Page 2 of 15

Reference information. Here is a collection of information that might, or might not, be
useful while taking the test. You can remove this page from the exam if you wish.

C++ strings: If s is a string, s.length() and s.size()return the number of characters in it.
Subscripts (s[i]) can be used to access individual characters.

C++ STL:

• If lst is a STL vector, then lst.begin() and lst.end() return iterator values
of type vector<...>::iterator. STL lists and sets are similar.

• A STL map is a collection of Pair objects. If p is a Pair, then p.first and
p.second denote its two components. If the Pair is stored in a map, then p.first
is the key and p.second is the associated value.

• If m is a map, m.begin() and m.end() return iterator values. For a map, these
iterators refer to the Pair objects in the map.

• If it is an iterator, then *it can be used to reference the item it currently points to, and
++it will advance it to the next item, if any.

• Some useful operations on STL containers (lists, maps, sets, etc.):
o c.clear() – remove all elements from c
o c.size() – return number of elements in c
o c.empty() – true if number of elements in c is 0, otherwise false

• Additional operations on vectors:
o c.push_back(x) – copy x to end of c

• Some additional operations on maps:
o m.insert(x) – add copy of x to m (a key-value pair for a map)
o m.count(x) – number of elements with key x in m (0 or 1)
o m[k] can be used to access the value associated with key k. If m[k] is read and

has never been accessed before, then a <key,value> Pair is added to the map
with k as the key and with a value created by the default constructor for the value
type (0 or nullptr for primitive types).

• Some additional operations on sets
o s.insert(x) – add x to s if not already present
o s.count(x) – number of copies of x in s (0 or 1)

• You may use the C++11 auto keyword, C++11-style for-loops for iterating through
containers, and any other features of standard C++11, but you are not required to do so.

 CSE 333 Final Exam June 6, 2017

 Page 3 of 15

More reference information. You can also remove this page if you wish.

Some POSIX I/O and TCP/IP functions:

• int accept(int sockfd, struct socckaddr *addr, socklen_t *addrlen);
• int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen)
• int close(int fd)
• int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
• int freeaddrinfo(struct addrinfo *res)
• int getaddrinfo(const char *hostname, const char *service,

 const struct addrinfo *hints, struct addrinfo **res)
o Use NULL or listening port number for second argument

• int listen(int sockfd, int backlog)
o Use SOMAXCONN for backlog

• off_t lseek(int fd, off_t offset, int whence)
o whence is one of SEEK_SET, SEEK_CUR, SEEK_END

• ssize_t read(int fd, void *buf, size_t count)
o if result is -1, errno could contain EINTR, EAGAIN, or other codes

• int socket(int domain, int type, int protocol)
o Use SOCK_STREAM for type (TCP), 0 for protocol, get domain from address

info struct (address info struct didn’t fit on this page – we’ll include it later if
needed)

• ssize_t write(int fd, const void *buf, size_t count)

Some pthread functions:

• pthread_create(thread, attr, start_routine, arg)
• pthread_exit(status)
• pthread_join(thread, value_ptr)
• pthread_cancel (thread)
• pthread_mutex_init(pthread_mutex_t * mutex, attr) // attr=NULL usually
• pthread_mutex_lock(pthread_mutex_t * mutex)
• pthread_mutex_unlock(pthread_mutex_t * mutex)
• pthread_mutex_destroy(pthread_mutex_t * mutex)

Basic C memory management functions:

• void * malloc(size_t size)
• void free(void *ptr)
• void * calloc(size_t number, size_t size)
• void * realloc(void *ptr, size_t size)q

 CSE 333 Final Exam June 6, 2017

 Page 4 of 15

Question 1. (24 points) Some C and POSIX I/O programming. Given an int file
descriptor returned by open(), write a C function ReadFile that reads the entire file
designated by that file descriptor and returns a pointer to a heap-allocated array of bytes
containing the data from that file, and also returns the total number of bytes read. The
function result should be 1 (true) if the buffer was allocated and the data was read
successfully, and should be 0 (false) if there was an error. If the function detects an error
and returns 0, it should free any already-allocated data before returning (i.e., no memory
leaks).

The prototype for this function is,

int ReadFile(int fd, char **buffer, int *length)

where fd is the integer file descriptor of an open, ordinary file, buffer is the address of
a char* pointer, and length is the address of an integer variable.

ReadFile must use the POSIX read function to get the file data, and should correctly
handle the case where read returns -1 and errno is EAGAIN or EINTR, in which case
read should continue until it is able to successfully read the entire file, or until some
different, non-recoverable error is encountered.

Example: here is a small main program that opens a file, then uses ReadFile to obtain
the file contents.

int main(int argc, char **arv) {
 char *buffer; // address of buffer returned by ReadFile
 int length; // length of file read by ReadFile

 int fd = open("test.txt", O_RDONLY);
 ...
 int status = ReadFile(fd, &buffer, &length);
 if (status == 1) {
 // read succeeded - process file contents in buffer
 ...
 free(buffer);
 } else {
 // ReadFile encountered an error
 }
}

Write your answer on the next page. You can remove this page from the exam if you
wish.

 CSE 333 Final Exam June 6, 2017

 Page 5 of 15

Question 1. (cont.) Write your implementation of ReadFile below. The function
heading is provided for you.

int ReadFile(int fd, char **buffer, int *length) {

}

 CSE 333 Final Exam June 6, 2017

 Page 6 of 15

Question 2. (16 points) And now a bit of C++ coding. When we were indexing
documents in homework 2, one of the extra credit suggestions introduced the idea of
“stop words” – words like “a”, “the”, “of”, and others that are not particularly useful in
search results because they are so common.

For this problem, use C++ STL containers to implement a simple stop word filter
function. The input to the function is a pair of vectors: one containing the words from a
document, and the other containing a list of stop words. The function should return a
pointer to a new, heap-allocated vector<string> containing a copy of the original
words in the original order, but with all stop words removed. For instance, suppose the
original text and stop words are

text: { "in", "the", "beginning", "was", "the", "end", "of", "a", "short", "story" }
stop words: { "a", "the", "of", “an” }

The function should return a pointer to a new vector<string> containing

{ "in", "beginning", "was", "end", "short", "story" }

There is one catch: for full credit, your solution must run faster than O(n2) time by storing
the stop words in a set or map or some other container that can be accessed quickly, so
you don’t have to repeatedly re-scan the entire list of stop words to check for a match
against each word in the input text. Instead you should store the stop words in a data
structure where it is possible to check whether a word is present in either constant or
log(n) time. Also you should not copy the entire set of input words into the output and
then delete them one at a time, since each delete operation in a vector is itself an O(n)
operation. Just copy the words that do not appear in the stop list.

Hints: <vector>, <set>, maybe <map>

(Write your answer on next page. You may remove this page from the exam if you
wish.)

 CSE 333 Final Exam June 6, 2017

 Page 7 of 15

Question 2. (cont). Implement the function remove_words below. You should
assume all necessary headers are already #included, and you can assume a “using
namespace std;” directive is present to save some writing.

Hint: the sample solution is fairly short, with only about 8-10 lines of actual code plus a
few more lines with curly braces.

// return a new heap-allocated vector<string> with a copy
// of the input vector text from which every word in
// stop_words has been removed.
vector<string> * remove_words(const vector<string> & text,
 const vector<string> &stop_words) {

}

 CSE 333 Final Exam June 6, 2017

 Page 8 of 15

Question 3. (22 points) The usual, demented virtual function madness. Consider the
following program, which does compile and execute with no errors. Feel free to remove
this page from the exam while working the rest of the problem.

#include <iostream>
using namespace std;
class A {
public:
 A() { cout << "A::A" << endl; }
 virtual void f1() { cout << "A::f1" << endl; }
 virtual void f2() { f3(); cout << "A::f2" << endl; }
 void f3() { f1(); cout << "A::f3" << endl; }
 virtual ~A() { cout << "A::~A" << endl; }
};
class B: public A {
public:
 B() { cout << "B::B" << endl; }
 void f1() { cout << "B::f1" << endl; }
 void f3() { f1(); cout << "B::f3" << endl; }
 virtual ~B() { cout << "B::~B" << endl; }
};
class C: public B {
public:
 C() { cout << "C::C" << endl; }
 void f2() { f3(); cout << "C::f2" << endl; }
 virtual ~C() { cout << "C::~C" << endl; }
};

int main() {
 A* a1 = new A();
 a1->f2();
 cout << "----" << endl;
 A* a2 = new B();
 a2->f2();
 cout << "----" << endl;
 B* b1 = new C();
 b1->f2();
 cout << "----" << endl;
 delete a1;
 cout << "----" << endl;
 delete a2;
 cout << "----" << endl;
 delete b1;
 return 0;
}

 CSE 333 Final Exam June 6, 2017

 Page 9 of 15

Question 3. (cont.) (a) (12 points) Write the output produced when this program is
executed. If the output doesn’t fit in one column in the space provided, write multiple
vertical columns showing the output going from top to bottom, then successive columns
to the right.

(b) (10 points) Now, suppose we edit the original program and remove the keyword
virtual from every place it appears in the code, then compile and run the program
again (it does work if this is done). What output does it produce after this change?

 CSE 333 Final Exam June 6, 2017

 Page 10 of 15

Question 4. (14 points) The following C++ program creates a small binary tree and prints
it (the output is 17 5 42, in case it matters). However, the program leaks memory since
it contains no code to delete any of the allocated nodes.

Fix this program so it executes without any memory leaks by replacing ordinary pointers
with smart pointers where needed. You may not make any other changes, in particular
you may not add any delete statements. Write your changes directly in the code.

#include <iostream>
#include <memory> // for solution

// a simple binary tree node
struct BNode {

 int val_;

 BNode *left_;

 BNode *right_;

 // convenience constructor

 BNode(int val, BNode *left, BNode *right) :

 val_(val), left_(left), right_(right) { }

};

// print tree with root r using inorder traversal

void inorder(BNode *r) {

 if (r == nullptr)

 return;

 inorder(r->left_);

 std::cout << " " << r->val_ << " ";

 inorder(r->right_);

}

int main() {

 BNode *a = new BNode(5, new BNode(17,nullptr,nullptr),nullptr);

 BNode *root = new BNode(42, a, nullptr);

 inorder(root); std::cout << std::endl;

 return 0;

}

 CSE 333 Final Exam June 6, 2017

 Page 11 of 15

Question 5. (14 points) Templates. Now take another look at the original code from the
previous problem. Among other limitations, the values stored in the tree nodes are
restricted to ints. Your job this time is to make changes to the code so the node value
type is given by a template parameter. To get started, we’ve added the initial template
declaration and changed the type of val_ in the BNode declaration. You need to make
all of the other changes needed in the rest of the code, including any changes in the rest
of the BNode declaration, and any changes needed elsewhere so the program will use
nodes with int as the actual type and work just as it did before. (Do not make any smart
pointer changes here – just change the types and don’t worry about memory leaks.)

#include <iostream>
#include <memory> // for soution

// a simple binary tree node
template <class T>
struct BNode {

 T val_;

 BNode *left_;

 BNode *right_;

 // convenience constructor

 BNode(int val, BNode *left, BNode *right) :

 val_(val), left_(left), right_(right) { }

};

// print tree with root r using inorder traversal

void inorder(BNode *r) {

 if (r == nullptr)

 return;

 inorder(r->left_);

 std::cout << " " << r->val_ << " ";

 inorder(r->right_);

}

int main() {

 BNode *a = new BNode(5, new BNode(17,nullptr,nullptr),nullptr);

 BNode *root = new BNode(42, a, nullptr);

 inorder(root); std::cout << std::endl;

 return 0;

}

 CSE 333 Final Exam June 6, 2017

 Page 12 of 15

Question 6. (12 points) A bit of networking. When we were describing how a network
server works, we listed 7 steps that need to be done to establish communication with a
client, exchange data, and shut down. In the list below, fill in the name of the function
that is used at each step (the reference information at the beginning of the exam may be
useful for this), then give a 1-sentence description of the purpose of that step. Step 6
(read/write) is done for you as an example, and the function name for step 2 is also
provided. You should fill in the rest of the table.

1. Function: Purpose:

2. Function: socket Purpose:

3. Function: Purpose:

4. Function: Purpose:

5. Function: Purpose:

6. Function: read/write Purpose: exchange data with the client using the socket

7. Function: Purpose:

 CSE 333 Final Exam June 6, 2017

 Page 13 of 15

Question 7. (16 points) A bit of concurrency. One of the new interns is experimenting
with threads and came up with the following demo program which creates 5 threads, each
of which increments a global variable 1000 times. This program does compile and
execute with no compile- or runtime errors.
#include <pthread.h>
#include <stdio.h>
#include <iostream>
#include <time.h>

static int total = 0;

void *thread_start(void *arg) {

 for (int i = 0; i < 1000; i++) {

 total = total + 1;

 }

 std::cout << "The total is now " << total << std::endl;

 return NULL;

}

int main(int argc, char** argv) {

 int threads = 5; // make 5 threads

 pthread_t thr_array[threads];

 for (int i = 0; i < threads; i++) {

 if (pthread_create(&thr_array[i],NULL,&thread_start,NULL)
 != 0) {

 std::cerr << "pthread_create() failed." << std::endl;

 }

 }

 for (int i = 0; i < threads; i++) {

 if (pthread_join(thr_array[i], NULL) != 0) {

 std::cerr << "pthread_join() failed." << std::endl;

 }

 }

 std::cout << "The sum is " << total << std::endl;

 return 0;

}

(continued on the next page, but leave this page in the exam. You will need to write
some changes to the code above.)

 CSE 333 Final Exam June 6, 2017

 Page 14 of 15

Question 7. (cont) When we ran the program on the previous page several times, we got
strange results. Here is the output from three different executions:

$./sum
The total is now 1000
The total is now 1001
The total is now 2228
The total is now 2001
The total is now 3001
The sum is 3001
$./sum
The total is now The total is now 1030
1000
The total is now 2000
The total is now 2926
The total is now 2551
The sum is 2926
$./sum
The total is now The total is now The total is now 400010002000

The total is now 5000
The total is now 3000

The sum is 5000

(a) (6 points) Something odd is going on here. Not only is the output scrambled, but the
final sum isn’t always 5000, which it should be. Give a brief explanation of what is
causing this strange behavior.

(b) (10 points) On the previous page, make the minimal changes needed to the program to
guarantee that the global variable total is updated the correct number of times (e.g.,
5000 in this case) and also to guarantee that the output is printed with each message
occupying a single line and without having different parts of the output messages from
the different threads mixed together. Your solution should, however, still allow for as
much concurrent execution of the 5 threads as possible. For example, it is not reasonable
to rewrite the code so the 5 threads run sequentially, one after the other.

 CSE 333 Final Exam June 6, 2017

 Page 15 of 15

Question 8. (2 free points – all answers get the free points)

Draw a picture of something you plan to do this summer, hopefully something
interesting, exciting, fun, relaxing, or some combination of those and other adjectives.

Congratulations on a great quarter!!
Have a great summer and best wishes for the future.

The CSE 333 staff

