CSE 333 — Section 2: Structs, Debugging, Memory Management, and Valgrind
SOLUTIONS

1. Structs and Pointers

Final memory diagram (Note: eatFruit, growFruit, and exchangeFruit contexts would be

cleaned up and reused during program execution).

main eatFruit
o §{E§;;:;;en Fruit Orchard\0 fruit origin I
weight | 20.0
apple | origin |

weight | 333.0

volume 30

volume

growFruit

fruitPtr |

exchangeFruit

applePﬁEiiii_‘__

Heap Allocated Memory

fruitPtrPtr [

L

weight | 50.0

volume 12

name | Banana Orchard'\(

Output:

1. “20.5, 33, Apple Orchard”

2. “20.5, 23, Eaten Fruit Orchard”

3. “333.0, 30, Eaten Fruit Orchard”

4, “50.0, 12, Banana Orchard”

banana | ™

Initial values that were assigned

Struct is passed by value

Struct passed by “reference”

Struct is completely reassigned

2. Reverse a Linked List [Extra Practice]

struct Node* reverse (struct Node* head) {
struct Node *prev = NULL, *next = NULL;
struct Node *current = head;

while (current != NULL) {
next = current->next;
current->next = prev;
prev = current;
current = next;

return prev;

3. Sorted Array To Binary Search Tree [Extra Practice].
struct TreeNode *sortedArrayToBST(int[] arr, int low, int high) {

if (low > high) {
return NULL;

// Make the middle element the root of this subtree.

int mid = (low + high) / 2;
struct TreeNode *root = (struct TreeNode*)malloc (sizeof (TreeNode)) ;
root->value = arr[mid];

// Construct the left subtree and assign it to be the left child.
root->left = sortedArrayToBST (arr, low, mid - 1);

// Construct the right subtree and assign it to be the right child.
root->right = sortedArrayToBST (arr, mid + 1, high);

return root;

4. Leaky Code and Valgrind

#include <stdio.h>
#include <stdlib.h>

// Returns an array containing [n, n+l1, ... , m-1, m]. If n>m, then the
// array returned is []. If an error occurs, NULL is returned.

int* rangeArray(int n, int m) {

int length = m - n + 1;

// Heap allocate the array needed to return
int *array = (int*) malloc (sizeof (int) * length);

// Initialize the elements

// By using <=, we are writing to length + 1 ints instead of length ints
// Change <= to < to fix this off-by-one error

for (int i = 0; i < length; i++) {

arrayl[i] = 1 + n;

return array;

// Accepts two Integers as arguments
int main (int argc, char *argv[]) {
if (argc != 3) return EXIT FAILURE;

int n = atoi(argv([l]), m = atoi(argv[2]); // Parse cmd-line args

int *nums = rangeArray(n, m);

// Print the resulting array

// We’re allocating space for 10 ints, but we access 11
// ints with i <= instead of i <

for (int 1 = 0; 1 < (m - n + 1); 1i++) {

printf ("$d", nums[i]);
// We need to free the array of integers malloced in RangeArray.
free (nums) ;

// Append newline char to our output
pUtS (n");

return EXIT SUCCESS;

