W UNIVERSITY of WASHINGTON

L27: Concurrency and Processes

Concurrency: Processes
CSE 333 Spring 2019

Instructor: Justin Hsia

Teaching Assistants:
Aaron Johnston
Forrest Timour

Pat Kosakanchit
Travis McGaha

Andrew Hu
Kevin Bi
Renshu Gu

Daniel Snitkovskiy
Kory Watson
Tarkan Al-Kazily

CSE333, Spring 2019



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Administrivia

<+ hw4 due tomorrow (6/6)
= Submissions accepted until Friday (6/7)

+ Course evaluations! (see Piazza @694)

+» Final is Wednesday (6/12), 12:30-2:20 pm, ARC 147
= Review Session: Sunday (6/9), 4-6:30 pm, ECE 125
" Two double-sided, handwritten sheets of notes allowed

" Topic list and past finals on Exams page on website



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Outline

% Searchserver

= Sequential
" Concurrent via forking threads — pthread create ()
= Concurrent via forking processes — fork ()

® Concurrent via non-blocking, event-driven I/O — ()
- We won’t get to this ®

+ Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Creating New Processes

» [pid_t fork(void) ;|

= Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

- *Everything is cloned except threads: variables, file descriptors, open
sockets, the virtual address space (code, globals, heap, stack), etc.

" Primarily used in two patterns:
- Servers: fork a child to handle a connection
- Shells: fork a child that then exec’s a new program



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

fork () and Address Spaces

+~ A process executes within an

Stack
address space Sp==
" |ncludes segments for different parts
of memory
" Process tracks its current state using Shared Libraries
the stack pointer (SP) and program
counter (PC) 1

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
PC= .text, .rodata

0x00...00




W UNIVERSITY of WASHINGTON L27: Concurrency and Processes

fork () and Address Spaces

+ Fork cause the OS to
clone the SE)
address space

" The copies of the
memory segments are
(nearly) identical

" The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

PARENT

SP

fork ()

CSE333, Spring 2019

CHILD



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes

fork ()

+» fork () has peculiar semantics
®" The parent invokes fork ()
" The OS clones the parent

= Both the parent and the child return
from fork

- Parent receives child’s pid
- Child receives a 0

parent

fork()l

CSE333, Spring 2019




W UNIVERSITY of WASHINGTON L27: Concurrency and Processes

fork ()

+» fork () has peculiar semantics
®" The parent invokes fork ()
" The OS clones the parent

= Both the parent and the child return
from fork

- Parent receives child’s pid
- Child receives a 0

clone

CSE333, Spring 2019




W UNIVERSITY of WASHINGTON L27: Concurrency and Processes

fork ()

+» fork () has peculiar semantics
®" The parent invokes fork ()
" The OS clones the parent

= Both the parent and the child return
from fork

- Parent receives child’s pid
- Child receives a 0

+ See fork example.cc

child pid

CSE333, Spring 2019



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Concurrent Server with Processes

+~ The parent process blocks on accept (), waiting for a
new client to connect

®= When a new connection arrives, the parent calls fork () to
create a child process

" The child process handles that new connection and exit ()’s
when the connection terminates

+» Remember that children become “zombies” after death
"= Option A: Parent callswait () to “reap” children
" Option B: Use a double-fork trick

10



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Double-fork Trick

11



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Double-fork Trick

@
%
O@
92

12



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Double-fork Trick

~

’\, fork () child

13



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Double-fork Trick

S, fork () grandchild

14



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Double-fork Trick

childexit ()’s/ parentwait ()’s

15



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Double-fork Trick

m parent closes its
client connection

16



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Double-fork Trick

17



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Double-fork Trick

"1 £ork () child

~\, fork () grandchild
-~ exit ()

18



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Double-fork Trick

19



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Double-fork Trick

20



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes

Review Question

+» What will happen when one of the grandchildren
processes finishes?

= \/ote at http://PollEv.com/justinh

Zombie until grandparent reaps
Zombie until init reaps
. ZOMBIE FOREVER!!!

We’re lost...

moon®mp

CSE333, Spring 2019

21



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Concurrent with Processes

v+ See searchserver processes/

22



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Why Concurrent Processes?

+» Advantages:

= Almost as simple to code as sequential
- In fact, most of the code is identical!

= Concurrent execution leads to better CPU, network utilization

+» Disadvantages:

" Processes are heavyweight
- Relatively slow to fork
- Context switching latency is high

= Communication between processes is complicated

23



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

How Fastis fork () ?

+» See forklatency.cc

+» ~0.25 ms per fork*
= . maximum of (1000/0.25) = 4,000 connections/sec/core
= ~350 million connections/day/core

« This is fine for most servers

- Too slow for super-high-traffic front-line web services

— Facebook served ~ 750 billion page views per day in 2013!
Would need 3-6k cores just to handle fork (), i.e. without doing any work

for each connection

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ...

24



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

How Fast is pthread create()?

+» See threadlatency.cc

2+ ~0.036 ms per thread creation*
= ~10x faster than fork ()
= . maximum of (1000/0.036) = 28,000 connections/sec
= ~2.4 billion connections/day/core

+» Mush faster, but writing safe multithreaded code can be
serious voodoo

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ..., but will typically be an order of magnitude faster than fork()

25



W UNIVERSITY of WASHINGTON L27: Concurrency and Processes CSE333, Spring 2019

Aside: Thread Pools

+ In real servers, we’d like to avoid overhead needed to

create a new thread or process for every request

|dea: Thread Pools:

" Create a fixed set of worker threads or processes on server
startup and put them in a queue

= When a request arrives, remove the first worker thread from the
gueue and assign it to handle the request

®" When a worker is done, it places itself back on the queue and
then sleeps until dequeued and handed a new request

26



