W UNIVERSITY of WASHINGTON

L26: Concurrency and Threads

Concurrency: Threads
CSE 333 Spring 2019

Instructor: Justin Hsia

Teaching Assistants:

Aaron Johnston Andrew Hu
Forrest Timour Kevin Bi
Pat Kosakanchit Renshu Gu

Travis McGaha

Daniel Snitkovskiy
Kory Watson
Tarkan Al-Kazily

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Administrivia

J
0’0

Exercise 17 released today, due Wednesday (6/5)
= Concurrency via pthreads

hw4 due Thursday (6/6)
= Submissions accepted until Friday (6/7)

L/
0‘0

/
0‘0

Final is Wednesday (6/12), 12:30-2:20 pm, ARC 147
= Review Session: Sunday (6/9), 4-6:30 pm, ECE 125

" Two double-sided, handwritten sheets of notes allowed

" Topic list and past finals on Exams page on website

/
0‘0

Please fill out the course evaluations for lecture and your
section!

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Creating and Terminating Threads

. /O\A‘\‘M‘\' Pwamg‘\‘cr .
<+ | int pthread create(
pthread t* thread; foncbion _mk’_‘l
const pthread attr t* attr, (.t ! arg, postler
void* (*start routine) (void*), refurn velue)
| voldx arg); >9eneslizad - C)

= Creates a new thread, whose identifier is place in *th;‘ead, with
attributes *attr (NULL means default attributes) “Hiresd deseiphor

A

= Returns 0 on success and an error number on error (can check

against error constants) RS stavf_ndine
" The new thread runs start routine (arg)

- e -(”dg—aﬂ {odinues)

4

¢ | vo1d pthread exit (void* retwval);

)

" Equivalentof exit (retval) ; for athread instead of a process

®" The thread will automatically exit once it returns from
start routine ()

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

What To Do After Forking Threads?

B [int pthread join(pthread t thread, void** retval);]

= Waits for the thread specified by thread to terminate
= The thread equivalent of waitpid ()
" The exit status of the terminated thread is placed in **retval

Parer?\' L)C\(\'\j '6# d\;\d""o d‘\\\d

‘F’lv\is\'\ amA "u\?r\ recewes f 2

rts return \m\ue M o.veh"' e .—-—->

cles up — e v
cresie

o [int pthread detach (pthread t thread); J

= Mark thread specified by thread as detached — it will clean up

Its resources as soon as it terminates

ha >
detach WY from Pa(e\id' < D X
L‘ c\\.\A C_\faﬂS W O:HW ﬁ o«en"' - ___—>
Finishes f s>k

credte

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Concurrent Server with Threads

+» A single process handles all of the connections, but a
parent thread dispatches (creates) a new thread to handle
each connection

= The child thread handles the new connection and then exits when
the connection terminates

+ See searchserver threads/ forcode if curious

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Multithreaded Server

server

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Multithreaded Server

1 pthread create()
7’

m pthread detach/()
D .x

server

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Multithreaded Server

server

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Multithreaded Server

N
/\ pthread create()

server

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Multithreaded Server

shared

data
structures

server

10

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Thread Examples

+ See cthread.c

®" How do you properly handle memory management?
- Who allocates and deallocates memory?
- How long do you want memory to stick around?

+» Seepthread.cc

" More instructions per thread = higher likelihood of interleaving

+ See searchserver threads/searchserver.cc

" When callingpthread create (), start routine points
to a function that takes only one argument (a void¥*)

- To pass complex arguments into the thread, create a struct to bundle
the necessary data

11

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Why Concurrent Threads?

+» Advantages:

= Almost as simple to code as sequential

- In fact, most of the code is identical! (but a bit more complicated to
dispatch a thread)

= Concurrent execution with good CPU and network utilization
- Some overhead, but less than processes

= Shared-memory communication is possible

+» Disadvantages:

= Synchronization is complicated

= Shared fate within a process
« One “rogue” thread can hurt you badly

12

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Data Races

+» Two memory accesses form a data race if different
threads access the same location, and at least one is a
write, and they occur one after another

" Means that the result of a program can vary depending on chance
(which thread ran first?)

13

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads

Data Race Example

+ If your fridge has no milk,
then go out and buy some more

®" What could go wrong?

+ If you live alone:

@ ;
Ve
s AN
i\ T
» If you live with a roommate:
o ' g !

ME i

CSE333, Spring 2019

7

1t (!m1ilk) |
buy milk
L} 7
(]

14

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads

Data Race Example

only hede 51 £ (Inote) {
Gt beginning if ('milk) {
leave note

+» ldea: leave a note!
" Does this fix the problem?

= \/ote at http://PollEv.com/justinh pusy miilk
remove note
}
A. }
B. No, could end up with no milk Hon b | Reomode
' . i . c\rxed(n
C. No, could still buy multiple milk deck milk |
chede nde
! ‘ . hedk m,
D. We're lost... one pussible. sconard: g | k
leave ngre
[by Wik
L\I\Y M'\\k (
Y

fFme 15

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads

Threads and Data Races

+» Data races might interfere in painful, non-obvious ways,
depending on the specifics of the data structure

» Example: two threads try to read from and write to the
same shared memory location
" Could get “correct” answer
" Could accidentally read old value
" One thread’s work could get “lost”

+» Example: two threads try to push an item onto the head
of the linked list at the same time
" Could get “correct” answer
" Could get different ordering of items
" Could break the data structure! £ .

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Synchronization

L)

% Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data
= Need some mechanism to coordinate the threads

- “Let me go first, then you can go”

®" Many different coordination mechanisms have been invented
(see CSE 451)

4

+» Goals of synchronization:

= Liveness — ability to execute in a timely manner
(informally, “something good happens”)

= Safety —avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

17

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Lock Synchronization

+» Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time

= Executed in an uninterruptible (i.e. atomic) manner

L)

+ Pseudocode:

» Lock Acquire ' // non-critical code |
"= Wait until the lock is free, loop/idle
then take it lock.acquire () ;_/ if locked

// critical section
lock.release () ;

4

- Lock Release
= Release the lock // non-critical code

\ S

)

L)

" |f other threads are waiting, wake exactly one up to pass lock to

18

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads

CSE333, Spring 2019

Milk Example — What is the Critical Section?

« What if we use a lock on the
refrigerator?

" Probably overkill — what if
roommate wanted to get eggs?

» For performance reasons, only
put what is necessary in the
critical section
"= Only lock the milk

= But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

rfridge.lock()

1t (m1ilk) |
buy milk

}

fridge.unlock ()

!

‘milk lock.lock ()

1t (!m1ilk) |
buy milk
}

milk lock.unlock ()

19

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

pthreads and Locks

Another term for a lock is a mutex (“mutual exclusion”)
" pthread.h defines datatype pthread mutex t

L)

>

‘0

)

int pthread mutex init (pthread mutex t* mutex,
const pthread mutexattr t* attr);

" |nitializes a mutex with specified attributes

’0

L)

[int pthread mutex lock (pthread mutex t* mutex); J

= Acquire the lock — blocks if already locked

L)

>

(int pthread mutex unlock (pthread mutex t* mutex);)

= Releases the lock

‘0

D)

(int pthread mutex destroy (pthread mutex t~* mutex);)

" “Uninitializes” a mutex — clean up when done

20

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads

CSE333, Spring 2019

pthread Mutex Examples

+ See total.cc

= Data race between threads

+ See total locking.cc

= Adding a mutex fixes our data race

+» How does this compare to sequential code?

= Likely slower —only 1 thread can increment at a time, but have to
deal with checking the lock and switching between threads

" One possible fix: each thread increments a local variable and then
adds its value (once!) to the shared variable at the end

21

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

Your Turn! (pthread mutex)

+ Rewrite thread mainfrom total locking.cc:

It need to be passed an int* with the address of sum total
and an int with the number of times to loop (in that order)

Increment a local sum variable NUM times, then add it to
sum total

Handle synchronization properly!

22

L)

W UNIVERSITY of WASHINGTON L26: Concurrency and Threads CSE333, Spring 2019

C++11 Threads

% C++11 added threads and concurrency to its libraries

<thread> —thread objects
<mutex> —locks to handle critical sections

<condition variable>—used to block objects until
notified to resume

<atomic> —indivisible, atomic operations
<future>—asynchronous access to data

These might be built on top of <pthread.h>, but also might
not be

Definitely use in C++11 code if local conventions allow,
but pthreads will be around for a long, long time

Use pthreads in current exercise

23

