W UNIVERSITY of WASHINGTON

L25: Concurrency Intro

CSE333, Spring 2019

Introduction to Concurrency
CSE 333 Spring 2019

Instructor: Justin Hsia

Teaching Assistants:

Aaron Johnston Andrew Hu Daniel Snitkovskiy
Forrest Timour Kevin Bi Kory Watson
Pat Kosakanchit Renshu Gu Tarkan Al-Kazily

Travis McGaha

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Administrivia

+» hw4 due next Thursday (6/6)

" Yes, can still use one late day on hw4

+» Exercise 17 (last one!) released Monday, due Wednesday
" Concurrency viapthreads

+» Final is Wednesday (6/12), 12:30-2:20 pm, ARC 147
= Review Session: Sunday (6/9), 4-6:30 pm, ECE 125

= Reference sheet was passed out in section yesterday, also
available on course website

" Two double-sided, handwritten sheets of notes allowed
" Topic list and past finals on Exams page on website

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Some Common hw4 Bugs

+ Your server works, but is really, really slow
" Check the 2" argument to the QueryProcessor constructor

% Funny things happen after the first request

" Make sure you're not destroying the HTTPConnection object
too early (e.g. falling out of scope in a while loop)

+ Server crashes on a blank request

" Make sure that you handle the case that read () (or
WrappedRead ()) returns 0

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Outline

+» Understanding Concurrency
" Why is it useful
*" Why is it hard
% Concurrent Programming Styles
" Threads vs. processes
= Non-blocking I/O
+» Search Server Revisited

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Building a Web Search Engine

+ We need:

= A web index
- A map from <word> to <list of documents containing the word>
- This is probably sharded over multiple files
" A guery processor
- Accepts a query composed of multiple words
- Looks up each word in the index
- Merges the result from each word into an overall result set

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Web Search Architecture

index
file

index
file

query

processor

>
index ,///////’
file

W UNIVERSITY of WASHINGTON

L25: Concurrency Intro

CSE333, Spring 2019

Sequential Implementation

+» Pseudocode for sequential query processor:

(doclist Lookup (string word) {
bucket = hash (word) ;

hitlist = file.read (bucket);
foreach hit in hitlist {

doclist.append(file.read (hit)) ;

}

return doclist;

}

main ()
while (1) {

string query words[] = GetNextQuery ()
results = Lookup (query words([0]);
foreach word in query[l..n] {

results = results.intersect (Lookup (word)) ;

}

Display (results);
}

() AxendaxeN3eD

O/I Iomjau —_—

() AeTdsTa
() 30®sa=@3UuT "S3TNnsax

(e)}
i
o
(@
oo
C
=
Q.
(%}
o
(42)
o™
wl
(%)
O

v 0/I ASTP
.nu / |
() ()pesx°"oTT3
m m () dnyjoorT
=
- 0/I ¥STP -
i O m.
] ()pesx-oTT]
- () dnyooT
(@)
)
X O/I ¥STP
LL]
 © ()peo1-oTT3
e o () dnyjoor
= c
- -
= w () Axond3xoN3I®D ——
& =
: A () uteu
=

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Sequential Queries — Simplified

query 1

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Sequential Queries — Simplified

Only one I/O request at
a time is “in flight”

/

The CPU is idle most
of the time!

query 2 \

Queries don’t run until
earlier queries finish

query 1

10

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Sequential Can Be Inefficient

+» Only one query is being processed at a time
= All other queries queue up behind the first one

% The CPU is idle most of the time
= |t is blocked waiting for I/0O to complete

- Disk I/O can be very, very slow

+» At most one |I/O operation is in flight at a time

= Missed opportunities to speed /0 up
- Separate devices in parallel, better scheduling of a single device, etc.

11

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Concurrency

+» A version of the program that executes multiple tasks

simultaneously

= Example: Our web server could execute multiple queries at the
same time
- While one is waiting for I/O, another can be executing on the CPU

= Example: Execute queries one at a time, but issue 1/O requests
against different files/disks simultaneously

- Could read from several index files at once, processing the 1/0 results
as they arrive

% Concurrency != parallelism
= Parallelism is executing multiple CPU instructions simultaneously

12

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

A Concurrent Implementation

+» Use multiple threads or processes

= As a query arrives, fork a new thread (or process) to handle it

- The thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

- The thread uses blocking I/O; the thread alternates between
consuming CPU cycles and blocking on |/O

= The OS context switches between threads/processes

« While one is blocked on I/O, another can use the CPU
- Multiple threads’ I/O requests can be issued at once

13

L25: Concurrency Intro CSE333, Spring 2019

W UNIVERSITY of WASHINGTON

Introducing Threads

+ Separate the concept of a process from an individual

“thread of control”

= Usually called a thread (or a lightweight process), this is a
sequential execution stream within a process

— thread

+ In most modern OS’s:
" Process: address space, OS resources/process attributes
®" Thread: stack, stack pointer, program counter, registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

14

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Multithreaded Pseudocode

(main () {)
while (1) {
string query words[] = GetNextQuery ()
ForkThread (ProcessQuery ()) ;
}
\} J

[doclist Lookup (string word) {
bucket = hash (word) ;
hitlist = file.read (bucket);
foreach hit in hitlist
doclist.append(file.read (hit))
return doclist;

}

ProcessQuery () {
results = Lookup (query words[0]);
foreach word in query[l..n]
results = results.intersect (Lookup (word)) ;

Display (results) ;

15

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Multithreaded Queries — Simplified

query 3

query 2

query 1

16

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Why Threads?

+» Advantages:
" You (mostly) write sequential-looking code
= Threads can run in parallel if you have multiple CPUs/cores

+» Disadvantages:
* |f threads share data, you need locks or other synchronization
- Very bug-prone and difficult to debug

" Threads can introduce overhead
- Lock contention, context switch overhead, and other issues

®= Need language support for threads

17

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Alternative: Processes

+» What if we forked processes instead of threads?

+» Advantages:
" No shared memory between processes
®= No need for language support; OS provides “fork”

+ Disadvantages:

®= More overhead than threads during creation and context
switching

= Cannot easily share memory between processes — typically
communicate through the file system

18

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Alternate: Different 1/O Handling

+» Use asynchronous or non-blocking 1/0

+» Your program begins processing a query

" When your program needs to read data to make further progress,
it registers interest in the data with the OS and then switches to a
different query

®" The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

" When data becomes available, the OS lets your program know

+» Your program (almost never) blocks on I/O

19

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Non-blocking I/O

+» Reading from the network can truly block your program

"= Remote computer may wait arbitrarily long before sending data

+» Non-blocking /0O (network, console)

= Your program enables non-blocking 1/0O on its file descriptors
" Your program issues read () andwrite () system calls
- If the read/write would block, the system call returns immediately

" Program can ask the OS which file descriptors are
readable/writeable

- Program can choose to block while no file descriptors are ready

20

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Outline (next two lectures)

+» We'll look at different searchserver implementations
= Sequential
" Concurrent via dispatching threads — pthread create ()

= Concurrent via forking processes — fork ()

» Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

21

W UNIVERSITY of WASHINGTON

Sequential

+ Pseudocode:

L25: Concurrency Intro

listen fd = Listen (port);

while (1) {
client fd = accept(listen fd);

buf = read(client fd);
resp = ProcessQuery (buf) ;
write(client fd, resp);
close(client fd);

+ See searchserver sequential/

CSE333, Spring 2019

22

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Why Sequential?

+» Advantages:
= Super(?) simple to build/write

+» Disadvantages:

" |ncredibly poor performance
- One slow client will cause all others to block
- Poor utilization of resources (CPU, network, disk)

23

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Threads

+» Threads are like lightweight processes

*" They execute concurrently like processes
- Multiple threads can run simultaneously on multiple CPUs/cores

" Unlike processes, threads cohabitate the same address space

- Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

— But, they can interfere with each other — need synchronization for shared
resources

- Each thread has its own stack

24

W UNIVERSITY of WASHINGTON

L25: Concurrency Intro CSE333, Spring 2019

Threads and Address Spaces

SP

patent

panent

Stack

parent

+ Before creating a thread

" One thread of execution running

I

in the address space
- One PC, stack, SP

" That main thread invokes a

Shared Libraries

function to create a new thread

I

- Typically pthread create ()

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

25

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Threads and Address Spaces

+ After creating a thread

parent " Two threads of execution running
in the address space

Stack
parent - 1

SP g == StaclkCh”d - Original thread (parent) and new
4 thread (child)

- New stack created for child thread
T » Child thread has its own values of
the PC and SP
Heap (malloc/free) = Both threads share the other
et UM Segmemt segments (code, heap, globals)

.data, .bss
- They can cooperatively modify

— Rea(:-OtnIy Soelzg;nent shared data
.text, .rodata

Shared Libraries

PCoreat =

26

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

POSIX Threads (pthreads)

+» The POSIX APIs for dealing with threads
= Part of the standard C/C++ libraries, declared in pthread.h

"= To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

27

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Spring 2019

Creating and Terminating Threads

L 4

4

)

(int pthread create(

pthread t* thread,

const pthread attr t* attr,
void* (*start routine) (void*),

void* argqg);)

= Creates a new thread, whose identifier is place in *thread, with
attributes *attr (NULL means default attributes)

= Returns O on success and an error number on error (can check
against error constants)

" The new thread runs start routine (arg)

void pthread exit (void* retval);

" Equivalentof exit (retval) ; for athread instead of a process

®" The thread will automatically exit once it returns from

start routine ()
a— 28

