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Administrivia

» Exercise 15 released yesterday, due Wednesday (5/29)

" Client-side programming

» Exercise 16 released today, due Friday (5/31)

= Server-side programming

» hwd4 posted and files will be pushed to repos today
® Due last Thursday of quarter (6/6)

= Only 1 late day allowed for hw4 (hard deadline of 6/7)
= Demo today
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Socket API: Server TCP Connection

= Pretty similar to clients, but with additional steps: Analogy
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Servers

+ Servers can have multiple IP addresses (“multihoming”)

= Usually have at least one externally-visible IP address, as well as a
local-only address (127.0.0.1)

+» The goals of a server socket are different than a client
socket

"= Want to bind the socket to a particular port of one or more IP
addresses of the server

= Want to allow multiple clients to connect to the same port

- OS uses client IP address and port numbers to direct I/O to the
correct server file descriptor
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Step 1: Figure out IP address(es) & Port

+ Step 1: getaddrinfo () invocation may or may not be
needed (but we’ll use it)

= Do you know your IP address(es) already?

- Static vs. dynamic IP address allocation

- Even if the machine has a static IP address, don’t wire it into the code
— either look it up dynamically or use a configuration file

= Can request listen on all local IP addresses by passing NUL 1 as
hostname and setting AT PASSIVEinhints.ai flags

- Effectistouseaddress 0.0.0.0 (IPv4) or : : (IPv6)
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Step 2: Create a Socket

+» Step 2: socket () call is same as before

" Can directly use constants or fields from result of
getaddrinfo ()

= Recall that this just returns a file descriptor — IP address and port
are not associated with socket yet
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Step 3: Bind the socket

% | int bind(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

" Looks nearly identical to connect () !
" Returns O on success, =1 on error

+» Some specifics for addr:
" Address family: AF" INET or AF INETG6

- What type of IP connections can we accept?
- POSIX systems can handle IPv4 clients via IPv6 ©
" Port: portin network byte order (htons () is handy)

= Address: specify particular IP address or any IP address
+ “Wildcard address” — INADDR ANY (IPv4), in6addr any (IPv6)
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Step 4: Listen for Incoming Clients

D)

L)

» |int listen(int sockfd, int backlog) ;

= Tells the OS that the socket is a listening socket that clients can
connect to

" backlog: maximum length of connection queue
- Gets truncated, if necessary, to defined constant SOMAXCONN

- The OS will refuse new connections once queue is full until server
accept ()s them (removing them from the queue)

" Returns O on success, =1 on error

" (Clients can start connecting to the socket as soonas 1listen ()
returns

- Server can’t use a connection until you accept () it
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Pseudocode Time

Pieces you can use:

Error () ;

retval = getaddrinfo(...

freeaddrinfo (res);
fd = socket(...);
retval = bind (fd,

retval = listen (fd,
close (f£d) ;

L23: Server-side Programming

// print msg and exit

&res) ;

“
oy

SOMAXCONN) ; ‘
fra: qd‘k(in‘Fo(.m.s))’
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one foss"bﬂ'r'y:

%~ Assume we have setup struct addrinfo hints
to get both IPv4 and IPv6 addresses

"= Write pseudocode to bind to and listen
on the first socket that works

r.cT%m\ = quoMgn‘fo (... ,&!es)}'
Nt Sueees= O3
'FOr (f n ves {
4a= socket (...);
if (Fa == ~1)
Conti n\ue ;
I"C‘\vo\\ = bi"A(’fdg o -);
it (retu) == -\
dose (14)
} continne
vetva) = listen(fd, 55 MAX NN,
o (rdal=z~Y) §
tlole C‘Fd))'
towtinue)
3}
fuwecels = l}
break 5

i (sweeegy == 0)
Erro'r C ))
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Example #1

+» See server bind listen.cc

" Takes in a port number from the command line

"= Opens a server socket, prints info, then listens for connections for
20 seconds

- Can connect to it using netcat (nc)
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Step 5: Accept a Client Connection

+ | int accept(int sockfd, struct sockaddr* addr,
socklen t(jaddrlen

" Returns an active, ready-to-use socket file descriptor connected
to a client (or =1 on error)

- sockfd must have been created, bound, and listening
- Pulls a queued connection or waits for an incoming one
" addr and addrlen are output parameters

- *addrlen should initially be setto sizeof (*addr), gets
overwritten with the size of the client address

- Address information of client is written into *addr
— Use inet ntop () to get the client’s printable IP address
— Use getnameinfo () todo areverse DNS lookup on the client
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Example #2

» See server_accept_rw_close.cc

" Takes in a port number from the command line

" QOpens a server socket, prints info, then listens for connections
- Can connect to it using netcat (nc)

= Accepts connections as they come

= Echoes any data the client sends to it on stdout and also sends
it back to the client

12
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Something to Note

+ Our server code is not concurrent

= Single thread of execution
®" The thread blocks while waiting for the next connection

®" The thread blocks waiting for the next message from the
connection

+» A crowd of clients is, by nature, concurrent

= While our server is handling the next client, all other clients are
stuck waiting for it ®
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hw4 demo

+» Multithreaded Web Server (333gle)

" Don’t worry — multithreading has mostly been written for you
" _/http333d <port> <static files> <indices+>
= Some security bugs to fix, too

14



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Extra Exercise #1

+» Write a program that:
" Creates a listening socket that accepts connections from clients
= Reads a line of text from the client
= Parses the line of text as a DNS name
= Does a DNS lookup on the name

= Writes back to the client the list of IP addresses associated with
the DNS name

® Closes the connection to the client
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