W UNIVERSITY of WASHINGTON

L23: Server-side Programming

Server-side Programming
CSE 333 Spring 2019

Instructor: Justin Hsia

Teaching Assistants:
Aaron Johnston
Forrest Timour

Pat Kosakanchit
Travis McGaha

Andrew Hu
Kevin Bi
Renshu Gu

Daniel Snitkovskiy
Kory Watson
Tarkan Al-Kazily

CSE333, Spring 2019



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Administrivia

» Exercise 15 released yesterday, due Wednesday (5/29)

" Client-side programming

» Exercise 16 released today, due Friday (5/31)

= Server-side programming

» hwd4 posted and files will be pushed to repos today
® Due last Thursday of quarter (6/6)

= Only 1 late day allowed for hw4 (hard deadline of 6/7)
= Demo today



W UNIVERSITY of WASHINGTON L23: Server-side Programming

CSE333, Spring 2019

Socket API: Server TCP Connection

= Pretty similar to clients, but with additional steps: Analogy

1
2)
3)
4)
5)
6)
7)

e

Figure out the IP address and port on which to listen @ firt @ location

Create a socket
bind () the socket to the address(es) and

Tell the socketto 1isten () for incoming clients

accept () aclient connection
read () andwrite () to that connection
close () the client socket

@ bwild the sfucure

pOrt® prepuork § adverdisivn

Bopen e door
(custowme ¢s qucm)

O "next ofumer in line, plage!”’
@ tronsaction owuwrs
@ euslomer \eq\ RS

)



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Servers

+ Servers can have multiple IP addresses (“multihoming”)

= Usually have at least one externally-visible IP address, as well as a
local-only address (127.0.0.1)

+» The goals of a server socket are different than a client
socket

"= Want to bind the socket to a particular port of one or more IP
addresses of the server

= Want to allow multiple clients to connect to the same port

- OS uses client IP address and port numbers to direct I/O to the
correct server file descriptor



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Step 1: Figure out IP address(es) & Port

+ Step 1: getaddrinfo () invocation may or may not be
needed (but we’ll use it)

= Do you know your IP address(es) already?

- Static vs. dynamic IP address allocation

- Even if the machine has a static IP address, don’t wire it into the code
— either look it up dynamically or use a configuration file

= Can request listen on all local IP addresses by passing NUL 1 as
hostname and setting AT PASSIVEinhints.ai flags

- Effectistouseaddress 0.0.0.0 (IPv4) or : : (IPv6)



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Step 2: Create a Socket

+» Step 2: socket () call is same as before

" Can directly use constants or fields from result of
getaddrinfo ()

= Recall that this just returns a file descriptor — IP address and port
are not associated with socket yet



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Step 3: Bind the socket

% | int bind(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

" Looks nearly identical to connect () !
" Returns O on success, =1 on error

+» Some specifics for addr:
" Address family: AF" INET or AF INETG6

- What type of IP connections can we accept?
- POSIX systems can handle IPv4 clients via IPv6 ©
" Port: portin network byte order (htons () is handy)

= Address: specify particular IP address or any IP address
+ “Wildcard address” — INADDR ANY (IPv4), in6addr any (IPv6)



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Step 4: Listen for Incoming Clients

D)

L)

» |int listen(int sockfd, int backlog) ;

= Tells the OS that the socket is a listening socket that clients can
connect to

" backlog: maximum length of connection queue
- Gets truncated, if necessary, to defined constant SOMAXCONN

- The OS will refuse new connections once queue is full until server
accept ()s them (removing them from the queue)

" Returns O on success, =1 on error

" (Clients can start connecting to the socket as soonas 1listen ()
returns

- Server can’t use a connection until you accept () it



4

W UNIVERSITY of WASHINGTON

Pseudocode Time

Pieces you can use:

Error () ;

retval = getaddrinfo(...

freeaddrinfo (res);
fd = socket(...);
retval = bind (fd,

retval = listen (fd,
close (f£d) ;

L23: Server-side Programming

// print msg and exit

&res) ;

“
oy

SOMAXCONN) ; ‘
fra: qd‘k(in‘Fo(.m.s))’

CSE333, Spring 2019

one foss"bﬂ'r'y:

%~ Assume we have setup struct addrinfo hints
to get both IPv4 and IPv6 addresses

"= Write pseudocode to bind to and listen
on the first socket that works

r.cT%m\ = quoMgn‘fo (... ,&!es)}'
Nt Sueees= O3
'FOr (f n ves {
4a= socket (...);
if (Fa == ~1)
Conti n\ue ;
I"C‘\vo\\ = bi"A(’fdg o -);
it (retu) == -\
dose (14)
} continne
vetva) = listen(fd, 55 MAX NN,
o (rdal=z~Y) §
tlole C‘Fd))'
towtinue)
3}
fuwecels = l}
break 5

i (sweeegy == 0)
Erro'r C ))



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Example #1

+» See server bind listen.cc

" Takes in a port number from the command line

"= Opens a server socket, prints info, then listens for connections for
20 seconds

- Can connect to it using netcat (nc)

10



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Step 5: Accept a Client Connection

+ | int accept(int sockfd, struct sockaddr* addr,
socklen t(jaddrlen

" Returns an active, ready-to-use socket file descriptor connected
to a client (or =1 on error)

- sockfd must have been created, bound, and listening
- Pulls a queued connection or waits for an incoming one
" addr and addrlen are output parameters

- *addrlen should initially be setto sizeof (*addr), gets
overwritten with the size of the client address

- Address information of client is written into *addr
— Use inet ntop () to get the client’s printable IP address
— Use getnameinfo () todo areverse DNS lookup on the client

11



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Example #2

» See server_accept_rw_close.cc

" Takes in a port number from the command line

" QOpens a server socket, prints info, then listens for connections
- Can connect to it using netcat (nc)

= Accepts connections as they come

= Echoes any data the client sends to it on stdout and also sends
it back to the client

12



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Something to Note

+ Our server code is not concurrent

= Single thread of execution
®" The thread blocks while waiting for the next connection

®" The thread blocks waiting for the next message from the
connection

+» A crowd of clients is, by nature, concurrent

= While our server is handling the next client, all other clients are
stuck waiting for it ®

13



W UNIVERSITY of WASHINGTON L23: Server-side Programming

CSE333, Spring 2019

hw4 demo

+» Multithreaded Web Server (333gle)

" Don’t worry — multithreading has mostly been written for you
" _/http333d <port> <static files> <indices+>
= Some security bugs to fix, too

14



W UNIVERSITY of WASHINGTON L23: Server-side Programming CSE333, Spring 2019

Extra Exercise #1

+» Write a program that:
" Creates a listening socket that accepts connections from clients
= Reads a line of text from the client
= Parses the line of text as a DNS name
= Does a DNS lookup on the name

= Writes back to the client the list of IP addresses associated with
the DNS name

® Closes the connection to the client

15



