W UNIVERSITY of WASHINGTON

L22: Client-side Networking

Client-side Networking
CSE 333 Spring 2019

Instructor: Justin Hsia

Teaching Assistants:
Aaron Johnston
Forrest Timour

Pat Kosakanchit
Travis McGaha

Andrew Hu
Kevin Bi
Renshu Gu

Daniel Snitkovskiy
Kory Watson
Tarkan Al-Kazily

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON L22: Client-side Networking

Administrivia

+» hw3 is due Thursday (5/23)

" Usual reminders: don’t forget to tag, clone elsewhere, and
recompile

+» hw4 out on Friday (5/24)

» Exercise 15 will be released on Thursday
= Client-side TCP connection
= Related to section this week

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Spring 2019

Resolving DNS Names

+~ The POSIX way is to use getaddrinfo ()

A complicated system call found in #include <netdb.h>

[int getaddrinfo (const char* hostname,

const char* service,

const struct addrinfo* hints,
struct addrinfo** res);

- Tellgetaddrinfo () which host and port you want resolved
— String representation for host: DNS name or IP address

- Setup a “hints” structure with constraints you want respected

- getaddrinfo () gives you a list of results packed into an
“addrinfo” structure/linked list

— Returns 0 on success; returns negative number on failure

- Freethe struct addrinfo later using freeaddrinfo ()

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Spring 2019

getaddrinfo

+» getaddrinfo () arguments:
" hostname —domain name or IP address string

" service—port#(e.g. "80") orservice name (e.g. "www"

or NULL/nullptr
B | struct addrinfo {
int ai flags; // additional flags
int ai family; // AF INET, AF INET6, AF UNSPEC
int al socktype; // SOCK STREAM, SOCK DGRAM, 0
int ai_prOtOCOl; // IPPROTO TCP, IPPROTO UDP, 0
size t ai addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char* al canonname; // canonical name
struct addrinfo* ai next; // can form a linked list
¥

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Spring 2019

DNS Lookup Procedure

struct addrinfo {
int ai flags; // additional flags
int ai family; // AF INET, AF INET6, AF UNSPEC
int al socktype; // SOCK STREAM, SOCK DGRAM, 0
int ai_prOtOCOl; // IPPROTO TCP, IPPROTO UDP, 0
size t ai addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char* al canonname; // canonical name
struct addrinfo* ai next; // can form a linked list

¥

1) Createa struct addrinfo hints

2) Zeroout hints for “defaults”

3) Set specific fields of hints as desired

4) Callgetaddrinfo () using &§hints

5) Resulting linked list res will have all fields appropriately set

+ See dnsresolve.cc

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Spring 2019

Socket API: Client TCP Connection

+» There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Spring 2019

Step 2: Creating a Socket

4

L)

¢ | 1nt socket(int domain, int type, 1nt protocol);

" Creating a socket doesn’t bind it to a local address or port yet

= Returns file descriptor or -1 on error
socket.cc

a Y

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {

int socket fd = socket (AF INET, SOCK STREAM, O0);

1f (socket fd == -1) {
std::cerr << strerror (errno) << std::endl;
return EXIT FAILURE;

}

close (socket fd);

return EXIT SUCCESS;

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Spring 2019

Step 3: Connect to the Server

+» The connect () system call establishes a connection to
a remote host

B | int connect(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

- sockfd: Socket file description from Step 2

- addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

« Returns 0 on success and —1 on error

+» connect () may take some time to return

" |tis a blocking call by default

" The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

- This involves ~2 round trips across the network

W UNIVERSITY of WASHINGTON L22: Client-side Networking

Connect Example

+ See connect.cc

CSE333, Spring 2019

[// Get an appropriate sockaddr structure.
struct sockaddr storage addr;

size t addrlen;

LookupName (argv[1l], port, &addr, &addrlen);

// Create the socket.
int socket fd = socket (addr.ss family, SOCK STREAM, O0);
1f (socket fd == -1) {
cerr << "socket () failed: " << strerror(errno) << endl;
return EXIT FAILURE;

}

// Connect the socket to the remote host.

int res = connect (socket fd,
reinterpret cast<sockaddr*>(&addr),
addrlen) ;

1f (res == -1) {

cerr << "connect () failed: " << strerror (errno) << endl;

W UNIVERSITY of WASHINGTON L22: Client-side Networking

Review Question

+» How do we error check read () andwrite ()?
= \/ote at http://PollEv.com/justinh

Return value less than expected

Return value of 0 or NULL

. Return value of -1

m O O W »

We’re lost...

CSE333, Spring 2019

10

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON L22: Client-side Networking

Step 4: read ()

» If there is data that has already been received by the
network stack, then read will return immediately with it
" read () might return with /ess data than you asked for

» |f there is no data waiting for you, by default read ()
will block until something arrives
®" How might this cause deadlock?
" Canread () return0?

11

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Spring 2019

Step 4: read ()

» Assume we have:

" int socket fd; // fd of connected socket
" char readbuf[BUF]; // read buffer
" int res; // to store read result

«» Write C++ code to read in BUF characters from
socket fd

= If error occurs, send error message to user and exit ()

12

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Spring 2019

Step 4: write ()

» write () queues your datain a send buffer in the OS
and then returns

" The OS transmits the data over the network in the background

" Whenwrite () returns, the receiver probably has not yet
received the data!

+ If there is no more space left in the send buffer, by default
write () will block

13

Read/Write Example

« See sendreceive.cc

[while (1) ({
int wres = write(socket fd, readbuf, res);
1f (wres == 0) {
cerr << "socket closed prematurely" << endl;
close (socket fd);
return EXIT FAILURE;
}
1f (wres == -1) {
if (errno == EINTR)
continue;
cerr << "socket write failure: " << strerror (errno) << endl;
close (socket fd);
return EXIT FAILURE;
}

break;

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Spring 2019

14

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Spring 2019

Step 5: close ()

s [int close(1nt fd);]

= Nothing special here —it’s the same function as with file /O

= Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

15

W UNIVERSITY of WASHINGTON L22: Client-side Networking CSE333, Spring 2019

Extra Exercise #1

+» Write a program that:
= Reads DNS names, one per line, from stdin

" Translates each name to one or more IP addresses
" Prints out each IP address to stdout, one per line

16

