W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library

CSE333, Spring 2019

C++ Standard Template Library
CSE 333 Spring 2019

Instructor: Justin Hsia

Teaching Assistants:

Aaron Johnston Andrew Hu Daniel Snitkovskiy
Forrest Timour Kevin Bi Kory Watson
Pat Kosakanchit Renshu Gu Tarkan Al-Kazily

Travis McGaha

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

Administrivia
+» No exercise released today!

+» Homework 2 due tomorrow (5/2)

= Don’t forget to clone your repo to double-/triple-/quadruple-
check compilation!

+» Midterm is next Friday (5/10) @ 5-6:10 pm in KNE 130

" 1 double-sided page of hand-written notes;
reference info will be provided on exam

= Topics: everything from lecture, exercises, project, etc. up
through hw2 and C++ new/delete

" Old exams on course website, review in section next week

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

C++’s Standard Library

+» C++’s Standard Library consists of four major pieces:
1) The entire C standard library
2) C++'s input/output stream library
- std::cin, std::cout, stringstreams, fstreams, etc.
3) C++'s standard template library (STL) =
- Containers, iterators, algorithms (sort, find, etc.), numerics

4) C++'s miscellaneous library

- Strings, exceptions, memory allocation, localization

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

STL Containers ©

+» A container is an object that stores (in memory) a
collection of other objects (elements)
" Implemented as class templates, so hugely flexible
" More info in C++ Primer §9.2, 11.2

«» Several different classes of container
= Sequence containers (vector, deque, 1ist, ...)

= Associative containers (set, map, multiset, multimap,
bitset, ...)

= Differ in algorithmic cost and supported operations

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

STL Containers ®

+» STL containers store by value, not by reference
®= When you insert an object, the container makes a copy
= |f the container needs to rearrange objects, it makes copies

- e.g. if yousort a vector, it will make many, many copies
- e.g. if you insert into a map, that may trigger several copies

= What if you don’t want this (disabled copy constructor or copying
is expensive)?
- You can insert a wrapper object with a pointer to the object
— We'll learn about these “smart pointers” soon

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

Our Tracer Class

+ Wrapper class foran unsigned int value

Also holds unique unsigned int id (increasing from 0)
Default ctor, cctor, dtor, op=, op< defined
friend function operator<< defined

Private helper method PrintID () to return
"(1d ,value)" asastring

Class and member definitions can be found in Tracer.h and
Tracer.cc

+ Useful for tracing behaviors of containers

All methods print identifying messages
Unique 1d allows you to follow individual instances

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

STL vector

+» A generic, dynamically resizable array

http://www.cplusplus.com/reference/stl/vector/vector/

Elements are store in contiguous memory locations

- Elements can be accessed using pointer arithmetic if you'd like
- Random access is O(1) time

Adding/removing from the end is cheap (amortized constant
time)

Inserting/deleting from the middle or start is expensive (linear
time)

W UNIVERSITY of WASHINGTON

L14: C++ Standard Template Library

vector/Tracer Example

CSE333, Spring 2019

vectorfun.cc

-)
#include <iostream>
#include <vector>
#include "Tracer.h"

using namespace std;

int main(int argc, char**

Tracer a, b, c;
vector<Tracer> vec;

cout << "vec.push back "
vec.push back (a);
cout << "vec.push back "
vec.push back (b);
cout << "vec.push back "
vec.push back (c);

cout << "vec|[0]" << endl
cout << "vec|[Z]" << endl

return EXIT SUCCESS;

argv) {

<<

<<

<<

<<
<<

a << endl;

b << endl;

c << endl;

vec [0]
vec|[”]

<< endl;
<< endl;

N

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

Why All the Copying?

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

STL 1terator

« Each container class has an associated iterator class
(e.g. vector<int>::iterator) used to iterate

through elements of the container

=" http://www.cplusplus.com/reference/std/iterator/

" |terator rangeis from begin uptoend i.e., [begin, end)

end is one past the last container element!

= Some container iterators support more operations than others

All can be incremented (++), copied, copy-constructed

Some can be dereferenced on RHS (e.g. x = *it;)

Some can be dereferenced on LHS (e.g. *1it = x;)

Some can be decremented (—-)

Some support random access ([], +, —, +=, —=, <, > operators)

10

W UNIVERSITY of WASHINGTON

L14: C++ Standard Template Library

iterator Example

CSE333, Spring 2019

vectoriterator.cc

o
#include <vector>
#include "Tracer.h"
using namespace std;

int main(int argc, char** argv) {
Tracer a, b, c;
vector<Tracer> vecC;

vec.push back (a);
vec.push back (b);
vec.push back (c);

cout << "Iterating:" << endl;

vector<Tracer>::iterator it;

for (it = vec.begin(); it < vec.end();
cout << *it << endl;

}

cout << "Done iterating!" << endl;

return EXIT SUCCESS;

i1t++)

{

N

11

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library

Type Inference (C++11)

+» The auto keyword can be used to infer types
= Simplifies your life if, for example, functions return complicated

types
" The expression using auto must contain explicit initialization for

it to work

r// Calculate and return a Vector\
// containing all factors of n
std: :vector<int> Factors(int n);

volid foo (void) {
// Manually identified type
std: :vector<int> factsl =
Factors (324234) ;

// Inferred type
auto facts?2 = Factors (12321);

// Compiler error here
auto facts3;

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

auto and Iterators

+ Life becomes much simpler!

for (vector<Tracer>::iterator it = vec.begin(); 1t < vec.end(); 1it++) {
cout << *it << endl;

for (auto it = vec.begin(); it < vec.end(); it++) {
cout << *it << endl;

13

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

Range for Statement (C++11)

+ Syntactic sugar similar to Java’s foreach

~\

[for (declaration : expression) {
statements

}

L J

" declaration defines loop variable

" expressionisan object representing a sequence

- Strings, initializer lists, arrays with an explicit length defined, STL
containers that support iterators

(// Prints out a string, one
// character per line
std::string str("hello");

for (auto ¢ : str) {
std: :cout << ¢ << std::endl;

\} J

14

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library

Updated iterator Example

CSE333, Spring 2019

vectoriterator_2011.cc

o
#include <vector>
#include "Tracer.h"
using namespace std;

int main(int argc, char** argv) {
Tracer a, b, c;
vector<Tracer> vecC;

vec.push back (a);
vec.push back (b);
vec.push back (c);

cout << "Iterating:" << endl;
// "auto" is a C++11 feature not available
for (auto& p : wvec) {
cout << p << endl;
}
cout << "Done 1iterating!" << endl;
return EXIT SUCCESS;

N

on older compilers

15

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

STL Algorithms

+» A set of functions to be used on ranges of elements

= Range: any sequence that can be accessed through iterators or
pointers, like arrays or some of the containers

= General form: |algorithm (begin, end, ...);

+» Algorithms operate directly on range elements rather
than the containers they live in
" Make use of elements’ copy ctor, =, ==, ! =, <

= Some do not modify elements
» e.g. find, count, for each, min element,binary search

= Some do modify elements

« e.g. sort, transform, copy, swap

16

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library

Algorithms Example

CSE333, Spring 2019

vectoralgos.cc

(#include <vector>
#include <algorithm>
#include "Tracer.h"
using namespace std;

vold PrintOut (const Traceré& p) |
cout << " printout: " << p << endl;

}

int main(int argc, char** argv) {
Tracer a, b, c;
vector<Tracer> vec;

vec.push back (c);

vec.push back (a);

vec.push back (b) ;

cout << "sort:" << endl;

sort (vec.begin (), vec.end()):;

cout << "done sort!" << endl;

for each(vec.begin(), vec.end(), &PrintOut);
return 0O;

~\

17

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

Copying For sort

18

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

Iterator Question

+~ Write a function OrderNext () that takes a
vector<Tracer> iterator and then does the compare-and-
possibly-swap operation we saw in sort () on that element
and the one after it
= Hint: Iterators behave similarly to pointers!

= Example: OrderNext (vec.begin ()) should order the first 2
elements of vec

19

W UNIVERSITY of WASHINGTON L14: C++ Standard Template Library CSE333, Spring 2019

Extra Exercise #1

+» Using the Tracer.h/. cc files from lecture:

= Construct a vector of lists of Tracers

- j.e. a vector container with each element beinga 1ist of
Tracers

= Observe how many copies happen ©
- Use the sort algorithm to sort the vector
« Usethe 1ist.sort () function to sort each list

20

