W UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

C++ Class Details, Heap
CSE 333 Spring 2019

Instructor: Justin Hsia

Teaching Assistants:
Aaron Johnston
Forrest Timour

Pat Kosakanchit
Travis McGaha

Andrew Hu
Kevin Bi
Renshu Gu

Daniel Snitkovskiy
Kory Watson
Tarkan Al-Kazily

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Administrivia

+» Exercise 10 released today, due Monday
= Write a substantive class in C++!
= Referto Complex.h/Complex.cc

4

)

- Homework 2 due next Thursday (5/2)

" File system crawler, indexer, and search engine

L)

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Lecture Outline

+ Class Details

" Filling in some gaps from last time
% Using the Heap

" new/delete/delete]]

W UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

Rule of Three

If you define any of:
Destructor

2) Copy Constructor
3) Assignment (operator=)

% Then you should normally define all three

CSE333, Spring 2019

= Can explicitly ask for default synthesized versions (C++11):

(class Point {
public:
Point ()

~Point ()

default;
default;
Point (const Pointé& copyme)
Point& operator=(const Pointé& rhs)

default;
default; //

the default
the default
the default
the default

cctor

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Dealing with the Insanity

+» C++ style guide tip:
" |f possible, disable the copy constructor and assignment operator
by declaring as private and not defining them (pre-C++11)

Point.h
rclass Point { b
public:
Point (const int x, const int y) : x (x), vy (y) { } // ctor
private:
Point (const Pointé& copyme) ; // disable cctor (no def.)
Pointé& operator=(const Pointé& rhs); // disable "=" (no def.)
}Y; // class Point
Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point yv = w; // compiler error (no copy constructor)
y = X; // compiler error (no assignment operator)
\ J

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Disabling in C++11

% C++11 add new syntax to do this directly

" This is the better choice in C++11 code

Point_2011.h
rclass Point { b
public:
Point (const int x, const int y) : x (x), vy (y) { } // ctor
Point (const Point& copyme) = delete; // declare cctor and "=" as
Point& operator=(const Point& rhs) = delete; // as deleted (C++11)
private:
}Y; // class Point
Point w; // compiler error (no default constructor)
Point x(1, 2): // OK!
Point y = w; // compiler error (no copy constructor)
y = X; // compiler error (no assignment operator)
Q J

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

CSE333, Spring 2019

CopyFrom

% C++11 style guide tip:

" |f you disable them, then you instead may want an explicit
“CopyFrom” function that can be used when occasionally needed

Point.h
rclass Point {)
public:
Point (const int x, const int y) : x (x), v (y) { } // ctor
void CopyFrom(const Point& copy from me) ;
Point (Point& copyme) = delete; // disable cctor
Point& operator=(Point& rhs) = delete; // disable "="
private:
}; // class Point

S

sanepoint.cc

Point x(1, 2); // OK
Point vy (3, 4); // OK
x.CopyFrom(y); // OK

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Access Control

% Access modifiers for members:
" public: accessible to all parts of the program
" private: accessible to the member functions of the class

- Private to class, not object instances

" protected: accessible to member functions of the class and
any derived classes (subclasses — more to come, later)

+ Reminders:

= Access modifiers apply to all members that follow until another
access modifier is reached

" |If no access modifier is specified, st ruct members default to
public and class members defaultto private

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Nonmember Functions

+» “Nonmember functions” are just normal functions that

happen to use some class

= Called like a regular function instead of as a member of a class
object instance
- This gets a little weird when we talk about operators...

*" These do not have access to the class’ private members

+» Useful nonmember functions often included as part of

interface to a class
= Declaration goes in header file, but outside of class definition

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

friend Nonmember Functions

+ A class can give a nonmember function (or class) access to
its non-public members by declaringitasa friend
within its definition
"= Not a class member, but has access privileges as if it were

"= friend functions are usually unnecessary if your class includes

appropriate “getter” public functions

Complex.h
~

-
class Complex {
friend std::istreamé& operator>>(std::istream& in, Complexé& a);

L }; // class Complex

rstd::istream& operator>>(std::istream& 1in, Complex& a) {

}

\ J

Complex.cc 4

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Namespaces
+» Each namespace is a separate scope LL: Ttergbor | Sime name,
. - S HT:ddeedor | bt in deffendt
Useful for avoiding symbol collisions! namecpéces

+~ Namespace definition:

4)
" | namespace name {

// declarations go here

J

. J
" Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)

- This means that components (e.g. classes, functions) of a namespace
can be defined in multiple source files

11

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Classes vs. Namespaces

+» They seems somewhat similar, but classes are not
namespaces:

= There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

" To access a member of a namespace, you must use the fully
qualified name (i.e. nsp name: :member)

- Unless you are using that namespace

- You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

12

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Complex Example Walkthrough

See:
Complex.h
Complex.cc

testcomplex.cc

13

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Lecture Outline

« Class Details

" Filling in some gaps from last time
% Using the Heap
" new/delete /delete[]

14

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

C++11l nullptr

‘/‘O <;.«47 pbin""c'f?)

% Cand C++ have long used NULL as a pointer value that
references nothing

% C++11 introduced a new literal for this: nullptr

" New reserved word

" |nterchangeable with NUL T for all practical purposes, but it has
typ or any/every T, and is not an integer value

- Avoids funny edge cases (see C++ references for details)
- Still can convert to/from integer O for tests, assignment, etc.

= Advice: prefer nul lptrin C++11 code
- Though NULL will also be around for a long, long time

15

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

new/delete

+» To allocate on the heap using C++, you use the new
keyword instead of malloc () from stdlib.h
" You can use new to allocate an object (e.g. new Point)
" You can use new to allocate a primitive type (e.g. new int)

+» To deallocate a heap-allocated object or primitive, use the
delete keyword instead of £free () from stdlib.h

"= Don’t mix and match!
- Never £ree () something allocated with new
- Never delete something allocated withmalloc ()
- Careful if you're using a legacy C code library or module in C++

16

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

new/delete Example

: . , ™
rint* AllocateInt(int x) { h rPoint* AllocatePoint (int x, int y) {
int* heapy int = new int; Point* heapy pt = new Point(x,y);
*heapy int = x; return heapy pt;
return heapy int; }
U J \U y,

heappoint.cc

r#include "Point.h"
using namespace std;

int main() {
Point* x =
int* y = AllocatelInt(3);

cout << "x's x coord:
cout << "y: " K<Ly <"

delete x;
delete y;
return EXIT_SUCCESS;

// definitions of AllocatelInt () and AllocatePoint ()

AllocatePoint (1,

" << x->get x()

~

2);

<< endl;

vy " <K< ry << endl;

17

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Dynamically Allocated Arrays

% To dynamically allocate an array:

= Defaultinitialize: | type* name = new typel[size];

ftv\ew sti\ retuns & Poi.r\‘\er
+» To dynamically deallocate an array:

" Use|delete[] name; /

is Ths & Poin’h’r + & ‘H‘;"_‘)
oY On Nra\y 6'('H\i/\‘t)grf

" |tisanincorrectto use “delete name;” on an array

- The compiler probably won’t catch this, though (!) because it can’t
always tell if name* was allocated with new typel[size];
or new type;

— Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

- Result of wrong delete is undefined behavior

CSE333, Spring 2019

18

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Arrays Example (primitive)

arrays.cc

a \ \ N
#include "Point.h"

int main () {

int stack int; /] stack
int* heap int = new int; // heap (Q)N'b“&e)
int* heap int init = new int(12); // kea\o (value l2)

int stack arr[3]; //shk
int* heap arr = new int[3]; // heap Csﬁ'l’“ﬁe)

./ heap CVU\\"‘Q’ O)

int* heap arr init val = new 1int[3] ();

int* heap arr init 1lst = new int[3]{4, 5}; // C++11
/

delete heap int; //ccua*v

delete heap int init; //con«%-

delete heap arr; |
delete[] heap arr init wval; // Corvedd

// Memor lﬁS\k 6(l’\fa X 'w?rh_ ‘s"{ _'
return EXIT SUCCESS;

19

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Arrays Example (class objects)

CSE333, Spring 2019

arrays.cc
r#include "Point.h"]
int main () {
Point stack pt(l, 2); //5+ac|< ohjedt
Point* heap pt = new Point(l, 2); //“eo‘l’ o\ojcc+
)< Point* heap pt arr err = new Point] //O\gFWH' @onstroded 0\’8‘6'5 2
- - /] ervor! Jé'fw\'r@"““ L
Point* heap pt arr init 1st = new Polint([2]{{l 2y, {3, 41}};
// C++11
delete heap pt; //conec\‘
delete[] heap pt arr init 1st; //corveC\‘
return EXIT SUCCESS;
i)

-

'n'\'

20

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

malloc vs. new

reiioc) | ner
a function an operator or keyword

arrays, structs, okﬂ'ects, _

Allocated memory for anything L S0y'S given
primitives , type
. ey T TEwrd, TX¥
Returns avolid* r!approprlate po}\ter type
(should be cast) (doesn’t need a cast)
usaaly
When out of memory returns NUL T, throws an exception -,;m,,_,/o\

Deallocating free () deleteordelete[]

21

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Dynamically Allocated Class Members

class$ Foo "\GJ':

+» What will happen when we invoke baxr () ? it ¥ foophr_;
= Vote at http://PollEv.com/justinh
" |fthereisanerror, [Foo::Foo(int val) { Init(val); })

how would you fix it? Foo::~Foo () { delete foo ptr ; }

vold Foo::Init(int wval) {

foo ptr = new int;
*foo ptr = val;
| }
l\. \ $§%E‘E r?o?%fitor (const Fo?& igjﬁa{
B ete OO0 _ptr ; — GaEYING
B. Bad delete Init (* (rhs.foo ptrl')); r’“‘3"““"%I
}return *this; B B
C. Memory leak } Stack Hea
D. “Works” fine void bar() { g fw g —0]]
Foo a(10) ; N E¥
E. We'’re lost... |Foo b(20); elEr T =T

0o
G

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Heap Member Example

+» Let’s build a class to simulate some of the functionality of
the C++ string

" |nternal representation: c-string to hold characters
T it har ¥
+» What might we want to implement in the class?

defoutt construchir = we é.|.r.":3 . @
constructor From char™®

Prir\-\— 1o ostreon~
\C\ms“’k

Conco:"e vxod‘?b ~

D reminder: Hhiy 6095'\"‘ Coorst "\"\e Awll *ermingtor
2 we'll do d gperd instecd. Whidh 1 swalar

CopY ConsTructor

destrachs ¢ —_— '

C\EC!\ ‘*? i/\"%(v\c\\ MmemnN .

23

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Str Class Walkthrough

CSE333, Spring 2019

Str.h

(e .
#include <iostream>
using namespace std;

class Str {

public:
Str () ; // default ctor
Str (const char* s); // c-string ctor
Str (const Str& s); // copy ctor
~Str () ; // dtor

int length() const; // return length of string
char* ¢ str() const; // return a copy of st_
volid append (const Stré& s);

private:
char* st ; // c-string on heap (terminated by
\}; // class Str

Str& operator=(const Str& s); // string assignment

friend std::ostreamé& operator<<(std::ostream& out, const Str& s);

"\0")

24

W UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

Str::append

+~ Complete the append () member function:
" char* strcpy(char* dst, const char*

" char* strcat(char* dst, const charx*

CSE333, Spring 2019

src) ;

src) ;

[#include <cstring>
#include "Str.h"
// append contents of s to the end of this string

void Str::append(const Stré& s)

see

{

St co

25

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Spring 2019

Extra Exercise #1

« Write a C++ function that:

= Uses new to dynamically allocate an array of strings and uses
delete[] tofreeit

= Uses new to dynamically allocate an array of pointers to strings

- Assign each entry of the array to a string allocated using new

= Cleans up before exiting
- Use delete to delete each allocated string
- Uses delete[] to delete the string pointer array

- (whew!)

26

