C++ References, Const, Classes
CSE 333 Spring 2019

Instructor: Justin Hsia

Teaching Assistants:
Aaron Johnston Andrew Hu Daniel Snitkovskiy
Forrest Timour Kevin Bi Kory Watson
Pat Kosakanchit Renshu Gu Tarkan Al-Kazily
Travis McGaha
Administrivia

- Exercise 8 released today, due Wednesday
 - First C++ exercise!
 - Some parallels to ex0 – compare user input checking between C/C++

- Homework 2 due next Thursday (4/26)
 - File system crawler, indexer, and search engine
 - **Note:** `libhw1.a` (yours or ours) needs to be in right directory
 - **Demo:** use Ctrl-D to exit `searchshell`, test on directory of small self-made files
Lecture Outline

- C++ References
- const in C++
- C++ Classes Intro
Pointers Reminder

- **A pointer** is a variable containing an address
 - Modifying the pointer *doesn’t* modify what it points to, but you can access/modify what it points to by **dereferencing**
 - These work the same in C and C++

```c
int main(int argc, char** argv) {
    int x = 5, y = 10;
    int* z = &x;
    *z += 1;
    x += 1;
    z = &y;
    *z += 1;
    return EXIT_SUCCESS;
}
```
Pointers Reminder

- **A pointer** is a variable containing an address
 - Modifying the pointer *doesn’t* modify what it points to, but you can access/modify what it points to by **dereferencing**
 - These work the same in C and C++

```c
int main(int argc, char** argv) {
    int x = 5, y = 10;
    int* z = &x;
    *z += 1;
    x += 1;
    z = &y;
    *z += 1;
    return EXIT_SUCCESS;
}
```

Note: Arrow points to *next* instruction.
Pointers Reminder

- **A pointer** is a variable containing an address
 - Modifying the pointer *doesn’t* modify what it points to, but you can access/modify what it points to by *dereferencing*
 - These work the same in C and C++

```c
int main(int argc, char** argv) {
    int x = 5, y = 10;
    int* z = &x;

    *z += 1; // sets x to 6
    x += 1;

    z = &y;
    *z += 1;

    return EXIT_SUCCESS;
}
```

Note: Arrow points to next instruction.
Pointers Reminder

- **A pointer** is a variable containing an address
 - Modifying the pointer *doesn’t* modify what it points to, but you can access/modify what it points to by *dereferencing*
 - These work the same in C and C++

```c
int main(int argc, char** argv) {
    int x = 5, y = 10;
    int* z = &x;

    *z += 1;  // sets x to 6
    x += 1;   // sets x (and *z) to 7
    z = &y;
    *z += 1;

    return EXIT_SUCCESS;
}
```

Note: Arrow points to *next* instruction.
Pointers Reminder

- **A pointer** is a variable containing an address
 - Modifying the pointer *doesn’t* modify what it points to, but you can access/modify what it points to by dereferencing
 - These work the same in C and C++

```c
int main(int argc, char** argv) {
    int x = 5, y = 10;
    int* z = &x;

    *z += 1;  // sets x to 6
    x += 1;   // sets x (and *z) to 7

    z = &y;   // sets z to the address of y
    *z += 1;

    return EXIT_SUCCESS;
}
```

Note: Arrow points to next instruction.
Pointers Reminder

- **A pointer** is a variable containing an address
 - Modifying the pointer *doesn’t* modify what it points to, but you can access/modify what it points to by *dereferencing*
 - These work the same in C and C++

```c
int main(int argc, char** argv) {
    int x = 5, y = 10;
    int* z = &x;

    *z += 1;  // sets x to 6
    x += 1;   // sets x (and *z) to 7

    z = &y;   // sets z to the address of y
    *z += 1;  // sets y (and *z) to 11

    return EXIT_SUCCESS;
}
```
A **reference** is an alias for another variable

- **Alias**: another name that is bound to the aliased variable
 - Mutating a reference *is* mutating the aliased variable
- Introduced in C++ as part of the language

```cpp
int main(int argc, char** argv) {
    int x = 5, y = 10;
    int& z = x;
    z += 1;
    x += 1;
    z = y;
    z += 1;
    return EXIT_SUCCESS;
}
```
A **reference** is an alias for another variable

- **Alias**: another name that is bound to the aliased variable
 - Mutating a reference *is* mutating the aliased variable
- Introduced in C++ as part of the language

```cpp
int main(int argc, char** argv) {
    int x = 5, y = 10;
    int& z = x;  // binds the name "z" to x

    z += 1;
    x += 1;

    z = y;
    z += 1;

    return EXIT_SUCCESS;
}
```

Note: Arrow points to *next* instruction.
A reference is an alias for another variable

- **Alias**: another name that is bound to the aliased variable
 - Mutating a reference *is* mutating the aliased variable
- Introduced in C++ as part of the language

```c++
int main(int argc, char** argv) {
    int x = 5, y = 10;
    int& z = x;  // binds the name "z" to x
    z += 1;     // sets z (and x) to 6
    x += 1;
    z = y;
    z += 1;
    return EXIT_SUCCESS;
}
```

Note: Arrow points to next instruction.
References

- **A reference** is an alias for another variable
 - **Alias**: another name that is bound to the aliased variable
 - Mutating a reference *is* mutating the aliased variable
 - Introduced in C++ as part of the language

```cpp
int main(int argc, char** argv) {
    int x = 5, y = 10;
    int& z = x; // binds the name "z" to x
    z += 1; // sets z (and x) to 6
    x += 1; // sets x (and z) to 7
    z = y;
    z += 1;
    return EXIT_SUCCESS;
}
```

Note: Arrow points to *next* instruction.
References

- A **reference** is an alias for another variable
 - **Alias**: another name that is bound to the aliased variable
 - Mutating a reference *is* mutating the aliased variable
 - Introduced in C++ as part of the language

```c++
int main(int argc, char** argv) {
    int x = 5, y = 10;
    int& z = x; // binds the name "z" to x
    z += 1; // sets z (and x) to 6
    x += 1; // sets x (and z) to 7
    z = y; // sets z (and x) to the value of y
    z += 1;
    return EXIT_SUCCESS;
}
```

Note: Arrow points to next instruction.
References

- A **reference** is an alias for another variable
 - **Alias**: another name that is bound to the aliased variable
 - Mutating a reference *is* mutating the aliased variable
 - Introduced in C++ as part of the language

```c
define main(int argc, char** argv) {
    int x = 5, y = 10;
    int& z = x;  // binds the name "z" to x
    z += 1;     // sets z (and x) to 6
    x += 1;     // sets x (and z) to 7
    z = y;      // sets z (and x) to the value of y
    z += 1;     // sets z (and x) to 11
    return EXIT_SUCCESS;
}
```

Note: Arrow points to next instruction.
Pass-By-Reference

- C++ allows you to use real **pass-by-reference**
 - Client passes in an argument with normal syntax
 - Function uses reference parameters with normal syntax
 - Modifying a reference parameter modifies the caller’s argument!

```cpp
void swap(int& x, int& y) {
    int tmp = x;
    x = y;
    y = tmp;
}

text main(int argc, char** argv) {
    int a = 5, b = 10;
    swap(a, b);
    cout << "a: " << a << " b: " << b << endl;
    return EXIT_SUCCESS;
}
```

(passbyreference.cc)
Pass-By-Reference

- C++ allows you to use real **pass-by-reference**
 - Client passes in an argument with normal syntax
 - Function uses reference parameters with normal syntax
 - Modifying a reference parameter modifies the caller’s argument!

```c++
void swap(int& x, int& y) {
    int tmp = x;
    x = y;
    y = tmp;
}

int main(int argc, char** argv) {
    int a = 5, b = 10;
    swap(a, b);
    cout << "a: " << a << " b: " << b << endl;
    return EXIT_SUCCESS;
}
```

Note: Arrow points to *next* instruction.

```c++
  (main) a
  (swap) x | 5
  (main) b
  (swap) y | 10
  (swap) tmp
```

passbyreference.cc
Pass-By-Reference

- C++ allows you to use real **pass-by-reference**
 - Client passes in an argument with normal syntax
 - Function uses reference parameters with normal syntax
 - Modifying a reference parameter modifies the caller’s argument!

```cpp
void swap(int& x, int& y) {
    int tmp = x;
    x = y;
    y = tmp;
}

int main(int argc, char** argv) {
    int a = 5, b = 10;

    swap(a, b);
    cout << "a: " << a << " b: " << b << endl;
    return EXIT_SUCCESS;
}
```

Note: Arrow points to *next* instruction.
Pass-By-Reference

- C++ allows you to use real **pass-by-reference**
 - Client passes in an argument with normal syntax
 - Function uses reference parameters with normal syntax
 - Modifying a reference parameter modifies the caller’s argument!

```cpp
#include <iostream>

void swap(int& x, int& y) {
    int tmp = x;
    x = y;
    y = tmp;
}

int main(int argc, char** argv) {
    int a = 5, b = 10;
    swap(a, b);
    cout << "a: " << a << " b: " << b << endl;
    return EXIT_SUCCESS;
}
```

```plaintext
Note: Arrow points to next instruction.
```

```plaintext
(a) main a
   (swap) x 10

(b) main b
   (swap) y 10

(swap) tmp 5
```

passbyreference.cc
Pass-By-Reference

- C++ allows you to use real pass-by-reference
 - Client passes in an argument with normal syntax
 - Function uses reference parameters with normal syntax
 - Modifying a reference parameter modifies the caller’s argument!

```cpp
void swap(int& x, int& y) {
    int tmp = x;
    x = y;
    y = tmp;
}

int main(int argc, char** argv) {
    int a = 5, b = 10;
    swap(a, b);
    cout << "a: " << a << " b: " << b << endl;
    return EXIT_SUCCESS;
}
```

Note: Arrow points to next instruction.
Pass-By-Reference

- C++ allows you to use real **pass-by-reference**
 - Client passes in an argument with normal syntax
 - Function uses reference parameters with normal syntax
 - Modifying a reference parameter modifies the caller’s argument!

```cpp
void swap(int& x, int& y) {
    int tmp = x;
    x = y;
    y = tmp;
}

int main(int argc, char** argv) {
    int a = 5, b = 10;

    swap(a, b);
    cout << "a: " << a << " b: " << b << endl;
    return EXIT_SUCCESS;
}
```

Note: Arrow points to next instruction.

passbyreference.cc
Lecture Outline

- C++ References
- `const` in C++
- C++ Classes Intro
const

- **const**: this cannot be changed/mutated
 - Used *much* more in C++ than in C
 - Signal of intent to compiler; meaningless at hardware level
 - Results in compile-time errors

```cpp
void BrokenPrintSquare(const int& i) {
    i = i*i;  // compiler error here!
    std::cout << i << std::endl;
}

int main(int argc, char** argv) {
    int j = 2;
    BrokenPrintSquare(j);
    return EXIT_SUCCESS;
}
```

brokenpassbyrefconst.cc
const and Pointers

- Pointers can change data in two different contexts:
 1. You can change the value of the pointer
 2. You can change the thing the pointer points to (via dereference)

- **const** can be used to prevent either/both of these behaviors!
 - **const** next to pointer name means you can’t change the value of the pointer
 - **const** next to data type pointed to means you can’t use this pointer to change the thing being pointed to
 - **Tip**: read variable declaration from *right-to-left*
const and Pointers

- The syntax with pointers is confusing:

```c
int main(int argc, char** argv) {
    int x = 5; // int
    const int y = 6; // (const int)
    y++;

    const int *z = &y; // pointer to a (const int)
    *z += 1;
    z++;

    int *const w = &x; // (const pointer) to a (variable int)
    *w += 1;
    w++;

    const int *const v = &x; // (const pointer) to a (const int)
    *v += 1;
    v++;

    return EXIT_SUCCESS;
}
```
const and Pointers

- The syntax with pointers is confusing:

```c
int main(int argc, char** argv) {
    int x = 5; // int
    const int y = 6; // (const int)
y++;
    // compiler error

    const int *z = &y; // pointer to a (const int)
z += 1; // compiler error
    z++;
    // ok

    int *const w = &x; // (const pointer) to a (variable int)
w += 1; // ok
    w++;
    // compiler error

    const int *const v = &x; // (const pointer) to a (const int)
v += 1; // compiler error
    v++;
    // compiler error

    return EXIT_SUCCESS;
}
```
const Parameters

- A `const` parameter *cannot* be mutated inside the function
 - Therefore it does not matter if the argument can be mutated or not

- A non-`const` parameter *may* be mutated inside the function
 - It would be BAD if you passed it a `const` variable

```cpp
void foo(const int* y) {
    std::cout << *y << std::endl;
}

void bar(int* y) {
    std::cout << *y << std::endl;
}

int main(int argc, char** argv) {
    const int a = 10;
    int b = 20;

    foo(&a);    // OK
    foo(&b);    // OK
    bar(&a);    // not OK - error
    bar(&b);    // OK

    return EXIT_SUCCESS;
}
```
Polling Question

What will happen when we try to compile and run?

A. Output "(2, 4, 0)"
B. Output "(2, 4, 3)"
C. Compiler error about arguments to foo (in main)
D. Compiler error about body of foo
E. We’re lost…

```cpp
void foo(int* const x, int& y, int z) {
    *x += 1;
    y *= 2;
    z -= 3;
}

int main(int argc, char** argv) {
    const int a = 1;
    int b = 2, c = 3;
    foo(&a, b, c);
    std::cout << "(" << a << ", " << b << ", " << c << ")" << std::endl;
    return EXIT_SUCCESS;
}
```
When to Use References?

- A stylistic choice, not mandated by the C++ language
- Google C++ style guide suggests:
 - **Input parameters:**
 - Either use values (for primitive types like `int` or small structs/objects)
 - Or use `const` references (for complex struct/object instances)
 - **Output parameters:**
 - Use `const` pointers
 - Unchangeable pointers referencing changeable data
 - List input parameters first, then output parameters last

```cpp
void CalcArea(const int& width, const int& height,
              int* const area) {
    *area = width * height;
}
```
Lecture Outline

- C++ References
- const in C++
- C++ Classes Intro
Classes

- **Class definition syntax (in a `.h` file):**

  ```cpp
  class Name {
  public:
    // public member definitions & declarations go here
  
  private:
    // private member definitions & declarations go here
  };
  // class Name
  ```

- Members can be functions (methods) or data (variables)

- **Class member function definition syntax (in a `.cc` file):**

  ```cpp
  retType Name::MethodName(type1 param1, ..., typeN paramN) {
    // body statements
  }
  ```

- (1) *define* within the class definition or (2) *declare* within the class definition and then *define* elsewhere
Class Organization

- It’s a little more complex than in C when modularizing with `struct` definition:
 - Class definition is part of interface and should go in `.h` file
 - Private members still must be included in definition (!)
 - Usually put member function definitions into companion `.cc` file with implementation details
 - Common exception: setter and getter methods
 - These files can also include non-member functions that use the class

- Unlike Java, you can name files anything you want
 - Typically `Name.cc` and `Name.h` for class `Name`
#ifndef _POINT_H_
#define _POINT_H_

class Point {
 public:
 Point(const int x, const int y); // constructor
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const Point& p) const; // member function
 void SetLocation(const int x, const int y); // member function

 private:
 int x_; // data member
 int y_; // data member
}; // class Point

#endif // _POINT_H_
#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
 x_ = x;
 this->y_ = y; // "this->" is optional unless name conflicts
}

double Point::Distance(const Point& p) const {
 // We can access p’s x_ and y_ variables either through the
 // get_x(), get_y() accessor functions or the x_, y_ private
 // member variables directly, since we’re in a member
 // function of the same class.
 double distance = (x_ - p.get_x()) * (x_ - p.get_x());
 distance += (y_ - p.y_) * (y_ - p.y_);
 return sqrt(distance);
}

void Point::SetLocation(const int x, const int y) {
 x_ = x;
 y_ = y;
}
#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
 Point p1(1, 2); // allocate a new Point on the Stack
 Point p2(4, 6); // allocate a new Point on the Stack

 cout << "p1 is: (" << p1.get_x() << ", ";
 cout << p1.get_y() << ")" << endl;

 cout << "p2 is: (" << p2.get_x() << ", ";
 cout << p2.get_y() << ")" << endl;

 cout << "dist : " << p1.Distance(p2) << endl;
 return 0;
}
Reading Assignment

- Before next time, *read* the sections in *C++ Primer* covering class constructors, copy constructors, assignment (operator=), and destructors
 - Ignore “move semantics” for now
 - The table of contents and index are your friends...
 - Should we start class with a quiz next time?
Extra Exercise #1

- Write a C++ program that:
 - Has a class representing a 3-dimensional point
 - Has the following methods:
 - Return the inner product of two 3D points
 - Return the distance between two 3D points
 - Accessors and mutators for the x, y, and z coordinates
Extra Exercise #2

- Write a C++ program that:
 - Has a class representing a 3-dimensional box
 - Use your Extra Exercise #1 class to store the coordinates of the vertices that define the box
 - Assume the box has right-angles only and its faces are parallel to the axes, so you only need 2 vertices to define it
 - Has the following methods:
 - Test if one box is inside another box
 - Return the volume of a box
 - Handles <<, =, and a copy constructor
 - Uses const in all the right places