W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

CSE333, Spring 2019

C++ References, Const, Classes
CSE 333 Spring 2019

Instructor: Justin Hsia

Teaching Assistants:

Aaron Johnston Andrew Hu Daniel Snitkovskiy
Forrest Timour Kevin Bi Kory Watson
Pat Kosakanchit Renshu Gu Tarkan Al-Kazily

Travis McGaha

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Administrivia

+ Exercise 8 released today, due Wednesday
" First C++ exercise!

= Some parallels to ex0 — compare user input checking between
C/C++

+» Homework 2 due next Thursday (4/26)

" File system crawler, indexer, and search engine
= Note: 1ibhwl.a (yours or ours) needs to be in right directory

= Demo: use Ctrl-D to exit searchshell, test on directory of
small self-made files

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Lecture Outline

+ C++ References

&« constin C++

» C++ Classes Intro

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

POinterS Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) {
int x = 5, y = 10; x 5
) int* z = &X;

*z += 1;
x += 1; - 10
z = &yy
#7 = g
return EXIT SUCCESS; Z

L J
pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

POinterS Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) { h
int x = 5, y = 10; % 5
int* z = &x; f?

—t *z += 1;

x += 1; - 10
#7 = g \
return EXIT SUCCESS; z | 0x7£Uf..ad

}

\ Y

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

POinterS Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) { h
int x = 5, y = 10; e 6
int* z = &x; ﬁFD

*z += 1; // sets x to 6

— X += 1; v w
#7 = g ‘Q\
return EXIT SUCCESS; Z 057 FOE..a4

}
~ J

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

Pointers Reminder

+~ A pointer is a variable containing an address
" Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

return EXIT_SUCCESS;

. J

pointer.cc

CSE333, Spring 2019

Note: Arrow points
to next instruction.

W X

10

=

N\

Ox7ﬁgfma4

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

POinterS Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) { R
int x = 5, y = 10; x 7
int* z = &x;
*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 v 10
z = &y; // sets z to the address of y

— <7 += 1; \
return EXIT SUCCESS; Z Ox7f&fma0
}
. J

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

POinterS Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) { R
int x = 5, y = 10; x 7
int* z = &x;
*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 v 11
z = &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11 N\
=P rcturn EXIT SUCCESS; z | 0x760f..a0
}
- Y,

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

REfe rences to next instruction.

«+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { h

int x = 5, y = 10; % 5
—) Nnt& z = X;
z 4= 1: Al Eoif\"'@/: in"f:p}‘
x += 1: P dtve{eth ﬁ v 10
o = y;] wr re‘Ference: if\-|— ?,. \(')-
z += 1; Me ol of ¥
return EXIT SUCCESS;
}
\ y,

reference.cc
10

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

REfe rences to next instruction.

«+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { R
int x = 5, y = 10; X, Z 5
int& z = x; // binds the name "z" to x
qz += l;
x += 1; y 10
= Y
= 1y
return EXIT SUCCESS;
}
. y,

reference.cc
11

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

REfe rences to next instruction.

«+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { R
int x = 5, y = 10; X, Z 6
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
I L y 10
= Y
= 1y
return EXIT SUCCESS;
}
. y,

reference.cc
12

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

REfe rences to next instruction.

«+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable
" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { R
int x = 5, y = 10; X, Z 7
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6 .
x += 1; // sets x (and z) to 7 y (103

7
—> Z = Vs //hofma\\ c\ssiﬁhmer\‘l' .'
z += 1;
return EXIT SUCCESS;
}
. y,

reference.cc
13

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE333, Spring 2019

Note: Arrow points

REfe rences to next instruction.

«+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { R
int x = 5, y = 10; X, Z 10
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 v 10
z =1vy; // sets z (and x) to the value of y

—p 7 += 1;
return EXIT SUCCESS;
}
- y

reference.cc
14

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

REfe rences to next instruction.

«+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { R
int x = 5, y = 10; X, Z 11
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 v 10

=vy; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11
= rcturn EXIT SUCCESS;
}
- y

reference.cc
15

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

Pass-By-Reference to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void swap (int& x, int& y) | B
(main) a 5
char** argv) { (main) b 10
10;
=t sSwWap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT SUCCESS;
\} y,

passbyreference.cc 16

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

Pass-By-Reference to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void swap (int& x, int& y) { h
=) int tmp = X; .
% = W (main) a 5
v = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) ¥
swap (a, b); 4
cout << "a: " << a << "; b: " << b << endl; (swap) tmp
return EXIT SUCCESS;
}

J
passbyreference.cc 17

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON

Pass-By-Reference

L10: References, Const, Classes

Note: Arrow points
to next instruction.

+» C++ allows you to use real pass-by-reference
" Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

int

QX:

.

Yy =
}

(void swap (inté& x,

tmp
Y
tmp;

int& vy)

{

int main(int argc,
int a = 5, b =

char** argv)

10;

{

swap (a,

b ;

cout << "a:

return EXIT
}

T SUCCESS;

1) << a << ",.

b:

" << b << endl;

~
(main) a 5
(swap) x
\
(main) b <Eéj{
(swap) ¥
(swap) tmp 5

J

passbyreference.cc

18

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Note: Arrow points

Pass-By-Reference to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void swap (int& x, int& y) { h
int tmp = Xx; _
% = W (main) a 10
— 7 = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b); _
cout << "a: " << a << "; b: " << b << endl; (swap) tmp @
return EXIT SUCCESS;
\} J

passbyreference.cc 19

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

L10: References, Const, Classes

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (int& x, int& y) { b
int tmp = Xx;
X =y
y = tmp;

#
int main(int argc, char** argv) {

int a = 5, b = 10;
swap (a, Db);
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS;

\} J

(main) a 10
(swap) x
(main) b 5
(swap) ¥

(swap) tmp 5

passbyreference.cc

20

W UNIVERSITY of WASHINGTON

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

L10: References, Const, Classes

CSE333, Spring 2019

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (ints x, int& y) | R
int tmp = Xx;
X = y;
y = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = 10;
swap (a, Db);
=y COUL << "a: " <K g << "; b: " KK b << endl;
return EXIT SUCCESS;
\} J

(main) a 10

(main) b 5

passbyreference.cc

21

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Lecture Outline

+ C++ References
+ constin C++

» C++ Classes Intro

22

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

const

+» const: this cannot be changed/mutated

= Used much more in C++thanin C
ﬁ Signal of intent to compiler; meaningless at hardware level

- Results in compile-time errors

(void BrokenPrintSquare (const inté& i) { b

i = i*i; // compiler error here!
std::cout << 1 << std::endl;
}

int main(int argc, char** argv) {
int J = 2;
BrokenPrintSquare (j) ;
return EXIT SUCCESS;

}

L J

brokenpassbyrefconst.cc

23

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

const and Pointers

+» Pointers can change data in two different contexts:
. int X
1) You can change the value of the pointer g

X 1]
int ¥ p= &x}‘
2) You can change the thing the pointer points to o

(via dereference)

4

» const can be used to prevent either/both of these

D)

behaviors!
" const nextto pointer name means you can’t change the value of
the pointer T Y const P

" const nextto data ty&fointed to means you can’t use this

pointer to change the thing being pointed to @ *L\F’]
= Tip: read variable declaration from right-to-left </

24

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes CSE333, Spring 2019

const and Pointers

% The syntax with pointers is confusing:

int x = 5;
const int y

)§y++;

const int *z =
Rz RN
Z++;

int *const w = &X;
*wo+= 1;
X Wt+;

const 1nt *const v =
S LE

><v++;

return EXIT SUCCESS;

|

rint main (int argc, char** argv) {

&x;

// 1int

// (const int)

// pointer to a (const int)

// (const pointer) to a (variable int)

// (const pointer) to a (const int)

J

constmadness.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

const and Pointers

% The syntax with pointers is confusing:

rint main (int argc, char** argv) { h
int x = 5; // int
const int y = 6; // (const 1int)
y++; // compiler error
const int *z = &y; // polnter to a (const int)
*z += 1; // compiler error
Z++; // ok
int *const w = &Xx; // (const pointer) to a (variable int)
*wo+= 1; // ok
wW++; // compiler error
const int *const v = &x; // (const pointer) to a (const int)
*v o += 1; // compiler error
V++; // compiler error
return EXIT SUCCESS;
k} J

constmadness.cc 5

W UNIVERSITY of WASHINGTON

const Parameters

» A const parameter
cannot be mutated inside
the function

= Therefore it does not
matter if the argument can
be mutated or not

» A non-const parameter
may be mutated inside

the function j

" |t would be BAD if you

L10: References, Const, Classes

CSE333, Spring 2019

rvoid foo(const int* y) {
std::cout << *y << std::endl;
}

vord bar (Ant* <yl AN T

std: :cout << *y‘<< std: :endl;
}

int main(int argc, char** argv)

const int a = 10;
int b = 20;
_.>{f00(&a), // OK
foo (&b) ; // OK
__sbar (&a) ; // not OK — error
bar (&b) ; // OK

return EXIT_SUCCESS;

passed it a const variable

A\DQSV\"\ K'lul{}yy W\o()u'.-(\'

{

27

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Polling Question

+» What will happen when we try to compile and run?

= Vote at http://PollEv.com/justinh \[‘C‘L';:fi‘fjf Pffi(f?ﬁ poll.cc

(void foo (int~* const X,)
int vef 7 ints y, int z) {
A. *x 4= 17 /) allower 'Lloca\ copy 6F int
Y *= 27 /] slowek
B. OUtPUt “(21 4) 3)" Z == 37 J allowed, bt has no lasting efech
C. Compiler error }
about arguments int main(int argc, char** argv) {
)) const int a = 1;
to foo (in main) int b = 2, ¢ = 3;
L : (
D. Compiler error £00 g< %, ¢
std::cout << "(" << a <", "<XKDb
about body of foo CcC M M o< @ << M) << std::endl:
E. We're lost... return EXIT SUCCESS;
}

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

When to Use References?

+ A stylistic choice, not mandated by the C++ language
+» Google C++ style guide suggests:

" |nput parameters:

- Either use values (for primitive types like int or small

structs/objects) — oo making copy of srgpment

. Or use const referénces (for complex struct/object instances)
%m‘* change ™ funchvn b\)&‘/; alows bth const é:nm'cond' ar&.\\v\en"l'j
" Qutput parameters:

- Use const pointers

— Unchangeable pointers referencing changeable data O“JV(’VC\ F“"\"“de’
i eCessiry for this

order: ® List input parameters first, then output parameters last ecaple | but weh

v lustration
void CalcArea(const inte widggk/égggz—zgt& height,

int* const areé) {
*area = width * height;

J styleguide.cc

29

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Lecture Outline

+ C++ References

&« constin C++

«+ C++ Classes Intro

30

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Classes

+ Class definition syntax (in a . h file):

(class Name {
public:
// public member definitions & declarations go here

private:
// private member definitions & declarations go here
}Q> // class Name

\ R \ al fal L

— OoONT Forget!

= Members can be functions (methods) or data (variables)

+» Class member function definition syntax (in a . cc file):

retType Name: :MethodName (typel paraml, .., typeN paramN) {
// body statements

}

" (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

31

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Class Organization

% It’s a little more complex than in C when modularizing
with struct definition:
= (Class definition is part of interface and should go in . h file
- Private members still must be included in definition (!)

= Usually put member function definitions into companion . cc file
with implementation details
- Common exception: setter and getter methods

" These files can also include non-member functions that use the
class

+ Unlike Java, you can name files anything you want
" Typically Name.cc and Name.hforclass Name

32

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes CSE333, Spring 2019

Class Definition (. h file)

Point.h

(&QD

([

3 .&

(#ifndef POINT H

#define POINT H

class Point {

public:
Point (const int x, /cons
int get x() const™{ ret

int get y() const { ret
double Distance (const Pointé& p)
»yvoid SetLocation (const int x, const int y);\ // member function

private: inline (like & macro) inglead
int x ; // data member actaal funcdon all
int Y:%lfli—gi53<ffmber
}; // class Point aming _convention for class dada membecs
(Goojle CH+ style 3@0\6)
| #endif // POINT H.)

Hais Const means that this fanction is st G“uwee) o dr\ahée —P
object on which s called (hhe impheit “irs" puinitec)

; // constructor

} // inline member function
} // inline member function
const; '—_—_77 member function

urn X gy

urn y ;

Com{"\\ff Moy Choose to exp

he

(Lr\é\

DN AN

33

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

Class Member Definitions (. cc file)

Point.cc

(#include <cmath>
#include "Point.h"

Point::Point (const int x, const int vy)
% X; equalent fo v_ = v;
} t_ \\‘H,\;jh .is A (PD-\W\' ~¥ (,oﬂ\s’}')

double Point::Distance(const Pointé& p)

// member variables directly,
// function of the same class.
double distance (x - p.get x()) *
distance += (y - p.y) * (y - p.
return sqgrt(distance);

}

void Point::SetLocation(const int x,
X

y

Y

L)

"this->" is optional unless name conflicts

makes “this' & (Cof\s‘\ Poirt ¥ ‘0"3})'

// We can access p’s x and y variables either through the
// get x(), get y() accessor functions or the x , y private
since we’re 1in a member

y_

const int y)v{

)
RAD STYLE
{ ao2d here on purpose

const |

C-ec(u'\ua\en“' T pP-X-—

(x

I

- p.get_x());

(

CAV\L} be (_om)“\ ‘DCCQW)Q
WR 6@ mutalin g “taig”

CSE333, Spring 2019

34

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

Class Usage (. cc file)

CSE333, Spring 2019

usepoint.cc

r#include <iostream>
#include "Point.h"

using namespace std;

return 0;

int main(int argc, char** argv) {
Point pl(l, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

cout << "pl is: (" << pl.get x() << ", ";
cout << pl.get y () << ")" << endl;

cout << "p2 is: (" << pz.get—x() << H, u;
cout << p2.get_y() << ") " <KL endl;

cout << "dist : " <L p1t9i§52539l222 << endl;

Aot natatin ' nsed for member fanctons

Cov\s+ ructor

} ca\ls dedined

~\

35

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Spring 2019

Reading Assighment

+~ Before next time, read the sections in C++ Primer covering
class constructors, copy constructors, assignment
(operator=), and destructors
" |gnore “move semantics” for now
*" The table of contents and index are your friends...
= Should we start class with a quiz next time?

36

W UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE333, Spring 2019

Extra Exercise #1

% Write a C++ program that:
" Has a class representing a 3-dimensional point
"= Has the following methods:

- Return the inner product of two 3D points
- Return the distance between two 3D points
- Accessors and mutators for the x, v, and z coordinates

37

W UNIVERSITY of WASHINGTON

L10: References, Const, Classes

CSE333, Spring 2019

Extra Exercise #2

% Write a C++ program that:

" Has a class representing a 3-dimensional box

- Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

- Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

"= Has the following methods:

« Test if one box is inside another box
« Return the volume of a box

- Handles <<, =, and a copy constructor
- Uses const in all the right places

38

