C++ Intro CSE 333 Spring 2019

Guest Instructor: Aaron Johnston

Teaching Assistants:

Aaron Johnston	Andrew Hu	Daniel Snitkovskiy
Forrest Timour	Kevin Bi	Kory Watson
Pat Kosakanchit	Renshu Gu	Tarkan Al-Kazily
Travis McGaha		

Administrivia

- Exercise 7 posted yesterday, due Monday
 - Read a directory and open/copy text files found there
 - Copy *exactly* and *only* the bytes in the file(s). No extra output.
 - Good warm-up for...
- Homework 2 due in two weeks (5/2)
 - File system crawler, indexer, and search engine
 - Spec posted now
 - Starter files will be pushed out today

Today's Goals

- An introduction to C++
 - Give you a perspective on how to learn C++
 - Kick the tires and look at some code
- Advice: Read related sections in the C++ Primer
 - It's hard to learn the "why is it done this way" from reference docs, and even harder to learn from random stuff on the web
 - Lectures and examples will introduce the main ideas, but aren't everything you'll want need to understand

С

- We had to work hard to mimic encapsulation, abstraction
 - Encapsulation: hiding implementation details
 - Used header file conventions and the "static" specifier to separate private functions from public functions
 - Cast structures to void* to hide implementation-specific details (generalize)
 - **Abstraction:** associating behavior with encapsulated state
 - Function that operate on a LinkedList were not really tied to the linked list structure

We passed a linked list to a function, rather than invoking a method on a linked list instance

behavior and data separated

C++

- A major addition is support for classes and objects!
 - Classes
 - Public, private, and protected **methods** and **instance variables**
 - (multiple!) inheritance
 - Polymorphism
 - Static polymorphism: multiple functions or methods with the same name, but different argument types (overloading)
 - Works for all functions, not just class members
 - Dynamic (subtype) polymorphism: derived classes can override methods of parents, and methods will be dispatched correctly

С

- We had to emulate generic data structures
 - Generic linked list using void* payload
 - Pass function pointers to generalize different "methods" for data structures
 - Comparisons, deallocation, pickling up state, etc.

removes type info

C++

- Supports templates to facilitate generic data types
 - Parametric polymorphism same idea as Java generics, but different in details, particularly implementation
 - To declare that x is a vector of ints: vector(int) x;
 - To declare that x is a vector of floats: vector<float> x;
 - To declare that x is a vector of (vectors of floats): vector<vector<float>> x;

С

- We had to be careful about namespace collisions
 - C distinguishes between external and internal linkage
 - Use static to prevent a name from being visible outside a source file (as close as C gets to "private")
 - Otherwise, name is global and visible everywhere
 - We used naming conventions to help avoid collisions in the global namespace
 - *e.g.* <u>LL</u>IteratorNext vs. <u>HT</u>IteratorNext, etc.

C++

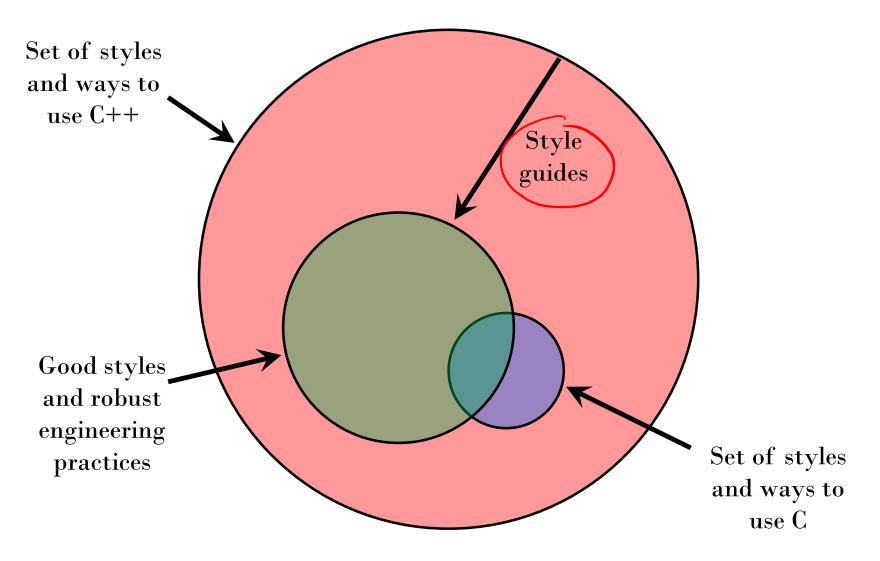
- Permits a module to define its own namespace!
 - The linked list module could define an "LL" namespace while the hash table module could define an "HT" namespace
 - Both modules could define an Iterator class
 - One would be globally named LL::Iterator and the other would be globally named HT::Iterator
- Classes also allow duplicate names without collisions
 - Namespaces group and isolate names in collections of classes and other "global" things (somewhat like Java packages)

С

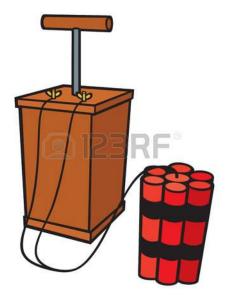
- C does not provide any standard data structures
 - We had to implement our own linked list and hash table
 - As a C programmer, you often reinvent the wheel... poorly
 - Maybe if you're clever you'll use somebody else's libraries
 - But C's lack of abstraction, encapsulation, and generics means you'll probably end up tweak them or tweak your code to use them

C++

- The C++ standard library is huge!
 - Generic containers: bitset, queue, list, associative array (including hash table), deque, set, stack, and vector
 - And iterators for most of these
 - Astring class: hides the implementation of strings
 - Streams: allows you to stream data to and from objects, consoles, files, strings, and so on
 - And more...

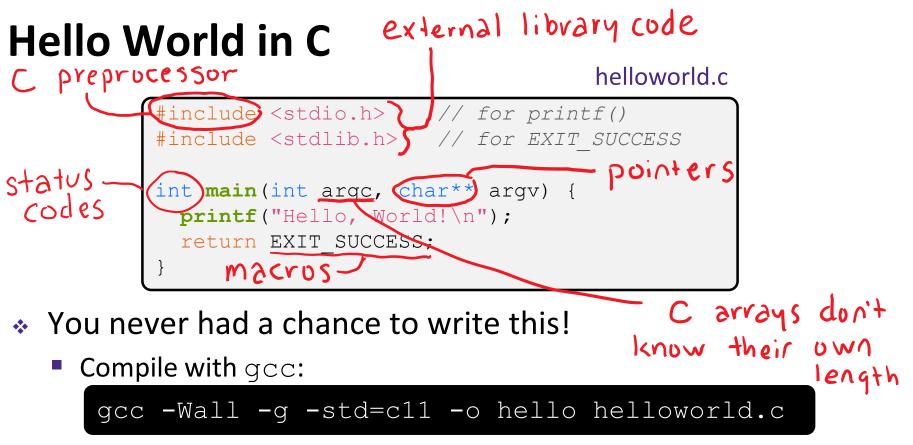

С

- Error handling is a pain
 - Have to define error codes and return them
 - Customers have to understand error code conventions and need to constantly test return values
 - e.g. if a () calls b (), which calls c ()
 - a depends on \mathbf{b} to propagate an error in \mathbf{c} back to it


C++


- Supports exceptions!
 - try/throw/catch
 - If used with discipline, can simplify error processing
 - But, if used carelessly, can complicate memory management
 - Consider: a () calls b () , which calls c ()
 - If c() throws an exception that b() doesn't catch, you might not get a chance to clean up resources allocated inside b()
- We will largely avoid in 333
 - You still benefit from having more interpretable errors!

How to Think About C++

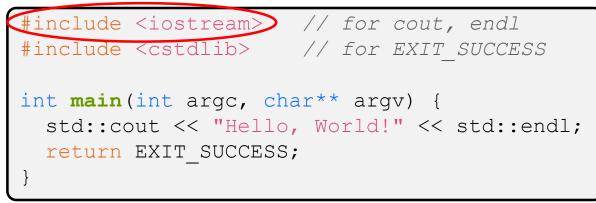


Or...

In the hands of a disciplined programmer, C++ is a powerful tool But if you're not so disciplined about how you use C++...

- Based on what you know now, describe to your neighbor everything that goes on in the execution of this "simple" program
 - Be detailed!

helloworld.cc



- Looks simple enough...
 - Compile with g++ instead of gcc:

 Let's walk through the program step-by-step to highlight some differences

helloworld.cc

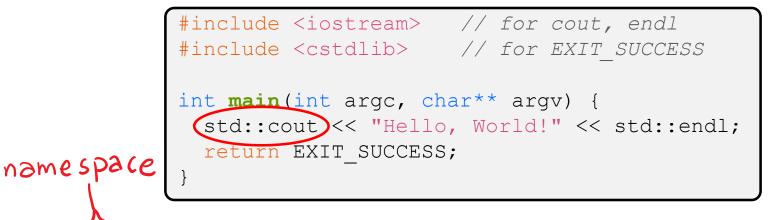
- * iostream is part of the C++ standard library
 - <u>Note</u>: you don't write ". h" when you include C++ standard library headers
 - But you do for local headers (e.g. #include "ll.h")
 - iostream declares stream object instances in the "std" namespace
 - e.g. std::cin, std::cout, std::cerr Stdin Stdout stdern

helloworld.cc

stdlib is the C standard library's stdlib.h

- Nearly all C standard library functions are available to you
 - For C header foo.h, you should #include <cfoo>
- We include it here for EXIT SUCCESS, as usual

helloworld.cc



C++ distinguishes between objects and primitive types

- These include the familiar ones from C: char, short, int, long, float, double, etc.
- C++ also defines bool as a primitive type (woo-hoo!)
 - Use it!

like Java Unlike C

helloworld.cc

- * std::cout is the "cout" object instance declared by iostream, living within the "std" namespace
 - C++'s name for stdout
 - std::cout is an object of classostream
 - <u>http://www.cplusplus.com/reference/ostream/ostream/</u>
 - Used to format and write output to the console
 - The entire standard library is in the namespace std

helloworld.cc

"<<" is an operator defined by the C++ language</p>

- Defined in C as well: usually it bit-shifts integers (in C/C++)
- C++ allows classes and functions to overload operators!
 - Here, the ostream class overloads "<<"
 - i.e. it defines different member functions (methods) that are invoked when an ostream is the left-hand side of the << operator

helloworld.cc

ostream has many different methods to handle <<</p>

- The functions differ in the type of the right-hand side (RHS) of <<</p>

helloworld.cc

- The ostream class' member functions that handle << return a reference to themselves
 - When std::cout << "Hello, World!"; is evaluated:</p>
 - A member function of the std::cout object is invoked
 - It buffers the string "Hello, World!" for the console
 - And it returns a reference to std::cout

helloworld.cc

- * Next, another member function on std::cout is
 invoked to handle << with RHS std::endl</pre>
 - std::endl is a pointer to a "manipulator" function
 - This manipulator function writes newline ('\n') to the ostream it is invoked on and then flushes the ostream's buffer (2)
 - This *enforces* that something is printed to the console at this point

Wow...

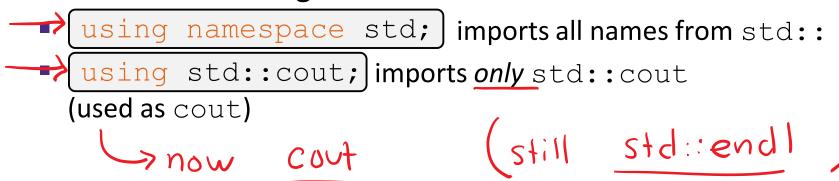
helloworld.cc

You should be surprised and scared at this point

- C++ makes it easy to hide a significant amount of complexity
 - It's powerful, but really dangerous

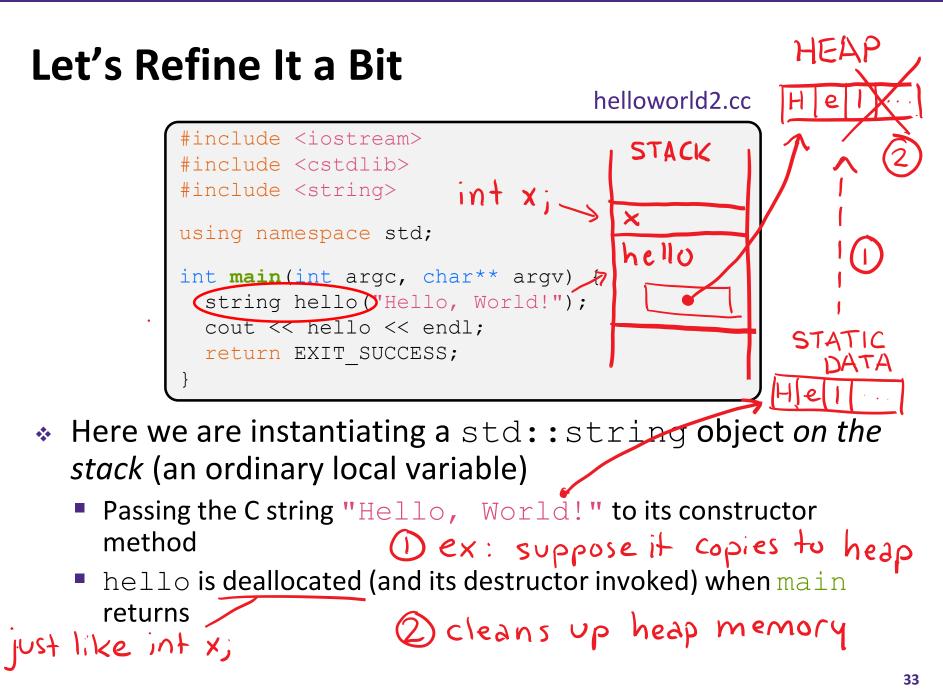
 Once you mix everything together (templates, operator overloading, method overloading, generics, multiple inheritance), it can get *really* hard to know what's actually happening!

helloworld2.cc



- C++'s standard library has a std :string class
 - Include the string header to use it
 - Seems to be automatically included in iostream on CSE Linux environment (C++11) – but include it explicitly anyway if you use it
 - <u>http://www.cplusplus.com/reference/string/</u>

helloworld2.cc


The using keyword introduces a namespace (or part of) into the current region

helloworld2.cc

- Benefits of using namespace std;
 - We can now refer to std::string as string, std::cout as cout, and std::endl as endl

helloworld2.cc

```
#include <iostream>
#include <cstdlib>
#include <string>
using namespace std;
int main(int argc, char** argv) {
   string hello("Hello, World!");
   cout << hello << endl;
   return EXIT_SUCCESS;
}</pre>
```

The C++ string library also overloads the << operator</p>

- Defines a function (not an object method) that is invoked when the LHS is ostream and the RHS is std::string
 - <u>http://www.cplusplus.com/reference/string/string/operator<</</u>

String Concatenation

concat.cc

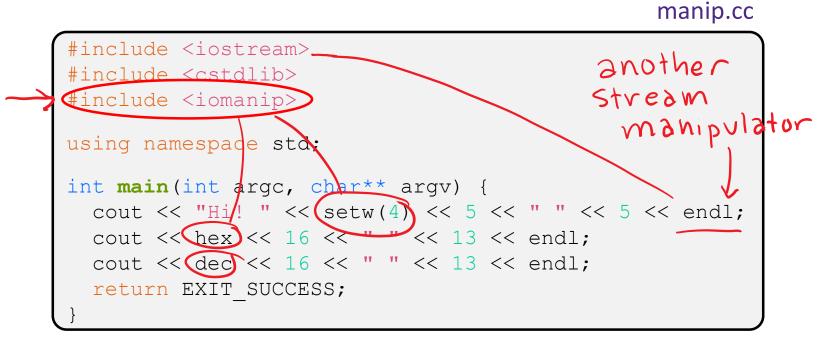
- The string class overloads the "+" operator
 - Creates and returns a new string that is the concatenation of the LHS and RHS

String Assignment

concat.cc

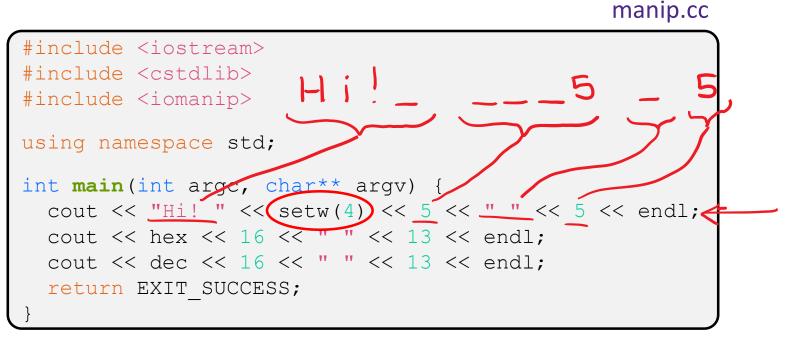
- The string class overloads the "=" operator
 - Copies the RHS and replaces the string's contents with it

String Manipulation


concat.cc

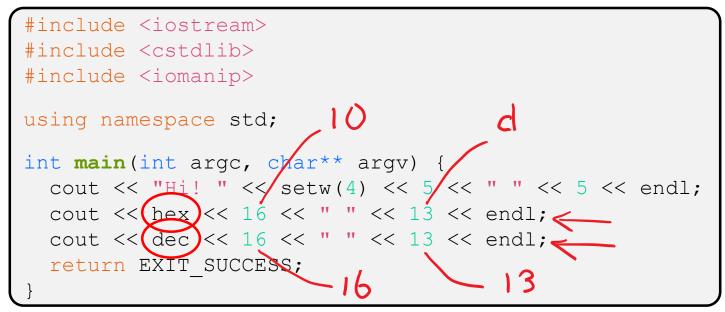
- This statement is complex!
 - First "+" creates a string that is the concatenation of hello's current contents and ", World!"
 - Then "=" creates a copy of the concatenation to store in hello temp string
 - Without the syntactic sugar:

hello.operator=(hello.operator+(", World!"));


Stream Manipulators

iomanip defines a set of stream manipulator functions

- Pass them to a stream to affect formatting
 - <u>http://www.cplusplus.com/reference/iomanip/</u>
 - <u>http://www.cplusplus.com/reference/ios/</u>


Stream Manipulators

- setw(x) sets the width of the next field to x
 - Only affects the next thing sent to the output stream (*i.e.* it is not persistent)

Stream Manipulators

manip.cc

- hex, dec, and oct set the numerical base for integers output to the stream
 - Stays in effect until you set the stream to another base (*i.e.* it is persistent)

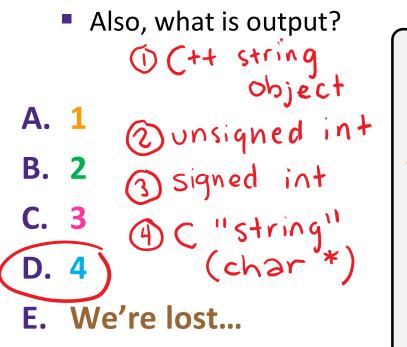
C and C++

helloworld3.cc

- ✤ C is (roughly) a subset of C++
 - You can still use printf but bad style in ordinary C++ code
 - Can mix C and C++ idioms if needed to work with existing code, but avoid mixing if you can
 - Use C++(11)

Reading

echonum.cc


```
#include <iostream>
#include <cstdlib>
using namespace std;
int main(int argc, char** argv) {
    int num;
    cout << "Type a number: ";
    cin >> num;
    cout << "You typed: " << num << endl;
    return EXIT_SUCCESS;
}</pre>
```

std::cin is an object instance of class istream

- Supports the >> operator for "extraction"
 - Can be used in conditionals (std::cin>>num) is true if successful
- Has a getline() method and methods to detect and clear errors

Peer Instruction Question "my face !

- How many *different* versions of << are called?</p>
 - For now, ignore manipulator functions
 - Vote at <u>http://PollEv.com/justinh</u>

#include <iostream> #include <cstdlib> #include <string> #include <iomanip> using namespace std; int main(int argc, char** argv) { int n = 172;string str("m"); str = "v"; cout << str << hx << sex (2)K< n << "e!")</pre> << ep return EXIT SUCCESS;

msg.cc

Extra Exercise #1

- Write a C++ program that uses stream to:
 - Prompt the user to type 5 floats
 - Prints them out in opposite order with 4 digits of precision