
CSE333, Spring 2019L09: C++ Intro

C++ Intro
CSE 333 Spring 2019

Guest Instructor: Aaron Johnston

Teaching Assistants:

Aaron Johnston Andrew Hu Daniel Snitkovskiy

Forrest Timour Kevin Bi Kory Watson

Pat Kosakanchit Renshu Gu Tarkan Al-Kazily

Travis McGaha

CSE333, Spring 2019L09: C++ Intro

Administrivia

 Exercise 7 posted yesterday, due Monday

 Read a directory and open/copy text files found there

• Copy exactly and only the bytes in the file(s). No extra output.

 Good warm-up for…

 Homework 2 due in two weeks (5/2)

 File system crawler, indexer, and search engine

 Spec posted now

 Starter files will be pushed out today

2

CSE333, Spring 2019L09: C++ Intro

Today’s Goals

 An introduction to C++

 Give you a perspective on how to learn C++

 Kick the tires and look at some code

 Advice: Read related sections in the C++ Primer

 It’s hard to learn the “why is it done this way” from reference
docs, and even harder to learn from random stuff on the web

 Lectures and examples will introduce the main ideas, but aren’t
everything you’ll want need to understand

3

CSE333, Spring 2019L09: C++ Intro

C

 We had to work hard to mimic encapsulation, abstraction

 Encapsulation: hiding implementation details

• Used header file conventions and the “static” specifier to separate
private functions from public functions

• Cast structures to void* to hide implementation-specific details
(generalize)

 Abstraction: associating behavior with encapsulated state

• Function that operate on a LinkedList were not really tied to the
linked list structure

• We passed a linked list to a function, rather than invoking a method
on a linked list instance

4

CSE333, Spring 2019L09: C++ Intro

C++

 A major addition is support for classes and objects!

 Classes

• Public, private, and protected methods and instance variables

• (multiple!) inheritance

 Polymorphism

• Static polymorphism: multiple functions or methods with the same
name, but different argument types (overloading)

– Works for all functions, not just class members

• Dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

5

CSE333, Spring 2019L09: C++ Intro

C

 We had to emulate generic data structures
 Generic linked list using void* payload

 Pass function pointers to generalize different “methods” for data
structures

• Comparisons, deallocation, pickling up state, etc.

6

CSE333, Spring 2019L09: C++ Intro

C++

 Supports templates to facilitate generic data types

 Parametric polymorphism – same idea as Java generics, but
different in details, particularly implementation

 To declare that x is a vector of ints: vector<int> x;

 To declare that x is a vector of floats: vector<float> x;

 To declare that x is a vector of (vectors of floats):
vector<vector<float>> x;

7

CSE333, Spring 2019L09: C++ Intro

C

 We had to be careful about namespace collisions

 C distinguishes between external and internal linkage

• Use static to prevent a name from being visible outside a source
file (as close as C gets to “private”)

• Otherwise, name is global and visible everywhere

 We used naming conventions to help avoid collisions in the global
namespace

• e.g. LLIteratorNext vs. HTIteratorNext, etc.

8

CSE333, Spring 2019L09: C++ Intro

C++

 Permits a module to define its own namespace!
 The linked list module could define an “LL” namespace while the

hash table module could define an “HT” namespace

 Both modules could define an Iterator class

• One would be globally named LL::Iterator and the other would
be globally named HT::Iterator

 Classes also allow duplicate names without collisions

 Namespaces group and isolate names in collections of classes and
other “global” things (somewhat like Java packages)

9

CSE333, Spring 2019L09: C++ Intro

C

 C does not provide any standard data structures

 We had to implement our own linked list and hash table

 As a C programmer, you often reinvent the wheel… poorly

• Maybe if you’re clever you’ll use somebody else’s libraries

• But C’s lack of abstraction, encapsulation, and generics means you’ll
probably end up tweak them or tweak your code to use them

10

CSE333, Spring 2019L09: C++ Intro

C++

 The C++ standard library is huge!

 Generic containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

• And iterators for most of these

 A string class: hides the implementation of strings

 Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

 And more…

11

CSE333, Spring 2019L09: C++ Intro

C

 Error handling is a pain

 Have to define error codes and return them

 Customers have to understand error code conventions and need
to constantly test return values

 e.g. if a() calls b(), which calls c()

• a depends on b to propagate an error in c back to it

12

CSE333, Spring 2019L09: C++ Intro

C++

 Supports exceptions!
 try / throw / catch

 If used with discipline, can simplify error processing

 But, if used carelessly, can complicate memory management

• Consider: a() calls b(), which calls c()

– If c() throws an exception that b() doesn’t catch, you might not get a
chance to clean up resources allocated inside b()

 We will largely avoid in 333

 You still benefit from having more interpretable errors!

13

CSE333, Spring 2019L09: C++ Intro

How to Think About C++

17

Set of styles

and ways to

use C++

Set of styles

and ways to

use C

Good styles

and robust

engineering

practices

Style

guides

CSE333, Spring 2019L09: C++ Intro

Or…

18

In the hands of a

disciplined programmer,

C++ is a powerful tool

But if you’re not so

disciplined about how you

use C++…

CSE333, Spring 2019L09: C++ Intro

Hello World in C

 You never had a chance to write this!
 Compile with gcc:

 Based on what you know now, describe to your neighbor
everything that goes on in the execution of this “simple” program

• Be detailed!

19

#include <stdio.h> // for printf()

#include <stdlib.h> // for EXIT_SUCCESS

int main(int argc, char** argv) {

printf("Hello, World!\n");

return EXIT_SUCCESS;

}

helloworld.c

gcc -Wall -g -std=c11 -o hello helloworld.c

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 Looks simple enough…
 Compile with g++ instead of gcc:

 Let’s walk through the program step-by-step to highlight some
differences

20

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

g++ -Wall -g -std=c++11 -o helloworld helloworld.cc

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 iostream is part of the C++ standard library

 Note: you don’t write “.h” when you include C++ standard library
headers

• But you do for local headers (e.g. #include "ll.h")

 iostream declares stream object instances in the “std”
namespace

• e.g. std::cin, std::cout, std::cerr

21

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 cstdlib is the C standard library’s stdlib.h

 Nearly all C standard library functions are available to you

• For C header foo.h, you should #include <cfoo>

 We include it here for EXIT_SUCCESS, as usual

22

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 C++ distinguishes between objects and primitive types

 These include the familiar ones from C:
char, short, int, long, float, double, etc.

 C++ also defines bool as a primitive type (woo-hoo!)

• Use it!

23

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 std::cout is the “cout” object instance declared by
iostream, living within the “std” namespace

 C++’s name for stdout

 std::cout is an object of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/

 Used to format and write output to the console

 The entire standard library is in the namespace std

24

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

http://www.cplusplus.com/reference/ostream/ostream/

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 “<<” is an operator defined by the C++ language

 Defined in C as well: usually it bit-shifts integers (in C/C++)

 C++ allows classes and functions to overload operators!

• Here, the ostream class overloads “<<”

• i.e. it defines different member functions (methods) that are invoked
when an ostream is the left-hand side of the << operator

25

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 ostream has many different methods to handle <<

 The functions differ in the type of the right-hand side (RHS) of <<

 e.g. if you do std::cout << "foo"; , then C++ invokes
cout’s function to handle << with RHS char*

26

std::cout << "foo";

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 The ostream class’ member functions that handle <<
return a reference to themselves
 When std::cout << "Hello, World!"; is evaluated:

• A member function of the std::cout object is invoked

• It buffers the string "Hello, World!" for the console

• And it returns a reference to std::cout

27

std::cout << "Hello, World!";

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 Next, another member function on std::cout is
invoked to handle << with RHS std::endl

 std::endl is a pointer to a “manipulator” function

• This manipulator function writes newline ('\n') to the ostream it
is invoked on and then flushes the ostream’s buffer

• This enforces that something is printed to the console at this point

28

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Wow…

 You should be surprised and scared at this point

 C++ makes it easy to hide a significant amount of complexity

• It’s powerful, but really dangerous

• Once you mix everything together (templates, operator overloading,
method overloading, generics, multiple inheritance), it can get really
hard to know what’s actually happening!

29

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Let’s Refine It a Bit

 C++’s standard library has a std::string class

 Include the string header to use it

• Seems to be automatically included in iostream on CSE Linux
environment (C++11) – but include it explicitly anyway if you use it

 http://www.cplusplus.com/reference/string/

30

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello, World!");

cout << hello << endl;

return EXIT_SUCCESS;

}

helloworld2.cc

http://www.cplusplus.com/reference/string/

CSE333, Spring 2019L09: C++ Intro

Let’s Refine It a Bit

 The using keyword introduces a namespace (or part of)
into the current region

 using namespace std; imports all names from std::

 using std::cout; imports only std::cout
(used as cout)

31

using namespace std;

using std::cout;

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello, World!");

cout << hello << endl;

return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Spring 2019L09: C++ Intro

Let’s Refine It a Bit

 Benefits of

 We can now refer to std::string as string, std::cout
as cout, and std::endl as endl

32

using namespace std;

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello, World!");

cout << hello << endl;

return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Spring 2019L09: C++ Intro

Let’s Refine It a Bit

 Here we are instantiating a std::string object on the
stack (an ordinary local variable)
 Passing the C string "Hello, World!" to its constructor

method

 hello is deallocated (and its destructor invoked) when main
returns

33

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello, World!");

cout << hello << endl;

return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Spring 2019L09: C++ Intro

Let’s Refine It a Bit

 The C++ string library also overloads the << operator

 Defines a function (not an object method) that is invoked when
the LHS is ostream and the RHS is std::string

• http://www.cplusplus.com/reference/string/string/operator<</

34

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello, World!");

cout << hello << endl;

return EXIT_SUCCESS;

}

helloworld2.cc

http://www.cplusplus.com/reference/string/string/operator<</

CSE333, Spring 2019L09: C++ Intro

String Concatenation

 The string class overloads the “+” operator

 Creates and returns a new string that is the concatenation of the
LHS and RHS

35

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello");

hello = hello + ", World!";

cout << hello << endl;

return EXIT_SUCCESS;

}

concat.cc

CSE333, Spring 2019L09: C++ Intro

String Assignment

 The string class overloads the “=” operator

 Copies the RHS and replaces the string’s contents with it

36

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello");

hello = hello + ", World!";

cout << hello << endl;

return EXIT_SUCCESS;

}

concat.cc

CSE333, Spring 2019L09: C++ Intro

String Manipulation

 This statement is complex!

 First “+” creates a string that is the concatenation of hello’s
current contents and ", World!"

 Then “=” creates a copy of the concatenation to store in hello

 Without the syntactic sugar:

• hello.operator=(hello.operator+(", World!"));
37

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello");

hello = hello + ", World!";

cout << hello << endl;

return EXIT_SUCCESS;

}

concat.cc

hello.operator=(hello.operator+(", World!"));

CSE333, Spring 2019L09: C++ Intro

Stream Manipulators

 iomanip defines a set of stream manipulator functions

 Pass them to a stream to affect formatting

• http://www.cplusplus.com/reference/iomanip/

• http://www.cplusplus.com/reference/ios/

38

#include <iostream>

#include <cstdlib>

#include <iomanip>

using namespace std;

int main(int argc, char** argv) {

cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

cout << hex << 16 << " " << 13 << endl;

cout << dec << 16 << " " << 13 << endl;

return EXIT_SUCCESS;

}

manip.cc

http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/ios/

CSE333, Spring 2019L09: C++ Intro

Stream Manipulators

 setw(x) sets the width of the next field to x

 Only affects the next thing sent to the output stream (i.e. it is not
persistent)

39

#include <iostream>

#include <cstdlib>

#include <iomanip>

using namespace std;

int main(int argc, char** argv) {

cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

cout << hex << 16 << " " << 13 << endl;

cout << dec << 16 << " " << 13 << endl;

return EXIT_SUCCESS;

}

manip.cc

CSE333, Spring 2019L09: C++ Intro

Stream Manipulators

 hex, dec, and oct set the numerical base for integers
output to the stream

 Stays in effect until you set the stream to another base (i.e. it is
persistent)

40

#include <iostream>

#include <cstdlib>

#include <iomanip>

using namespace std;

int main(int argc, char** argv) {

cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

cout << hex << 16 << " " << 13 << endl;

cout << dec << 16 << " " << 13 << endl;

return EXIT_SUCCESS;

}

manip.cc

CSE333, Spring 2019L09: C++ Intro

C and C++

 C is (roughly) a subset of C++
 You can still use printf – but bad style in ordinary C++ code

 Can mix C and C++ idioms if needed to work with existing code,
but avoid mixing if you can

• Use C++(11)

41

#include <cstdio>

#include <cstdlib>

int main(int argc, char** argv) {

printf("Hello from C!\n");

return EXIT_SUCCESS;

}

helloworld3.cc

CSE333, Spring 2019L09: C++ Intro

Reading

 std::cin is an object instance of class istream

 Supports the >> operator for “extraction”

• Can be used in conditionals – (std::cin>>num) is true if
successful

 Has a getline() method and methods to detect and clear
errors

42

#include <iostream>

#include <cstdlib>

using namespace std;

int main(int argc, char** argv) {

int num;

cout << "Type a number: ";

cin >> num;

cout << "You typed: " << num << endl;

return EXIT_SUCCESS;

}

echonum.cc

CSE333, Spring 2019L09: C++ Intro

Peer Instruction Question

 How many different versions of << are called?

 For now, ignore manipulator functions

 Vote at http://PollEv.com/justinh

 Also, what is output?

A. 1

B. 2

C. 3

D. 4

E. We’re lost…

43

#include <iostream>

#include <cstdlib>

#include <string>

#include <iomanip>

using namespace std;

int main(int argc, char** argv) {

int n = 172;

string str("m");

str += "y";

cout << str << hex << setw(2)

<< 15U << n << "e!" << endl;

return EXIT_SUCCESS;

}

msg.cc

http://pollev.com/justinh

CSE333, Spring 2019L09: C++ Intro

Extra Exercise #1

 Write a C++ program that uses stream to:

 Prompt the user to type 5 floats

 Prints them out in opposite order with 4 digits of precision

44

