
CSE333, Spring 2019L09: C++ Intro

C++ Intro
CSE 333 Spring 2019

Guest Instructor: Aaron Johnston

Teaching Assistants:

Aaron Johnston Andrew Hu Daniel Snitkovskiy

Forrest Timour Kevin Bi Kory Watson

Pat Kosakanchit Renshu Gu Tarkan Al-Kazily

Travis McGaha

CSE333, Spring 2019L09: C++ Intro

Administrivia

 Exercise 7 posted yesterday, due Monday

 Read a directory and open/copy text files found there

• Copy exactly and only the bytes in the file(s). No extra output.

 Good warm-up for…

 Homework 2 due in two weeks (5/2)

 File system crawler, indexer, and search engine

 Spec posted now

 Starter files will be pushed out today

2

CSE333, Spring 2019L09: C++ Intro

Today’s Goals

 An introduction to C++

 Give you a perspective on how to learn C++

 Kick the tires and look at some code

 Advice: Read related sections in the C++ Primer

 It’s hard to learn the “why is it done this way” from reference
docs, and even harder to learn from random stuff on the web

 Lectures and examples will introduce the main ideas, but aren’t
everything you’ll want need to understand

3

CSE333, Spring 2019L09: C++ Intro

C

 We had to work hard to mimic encapsulation, abstraction

 Encapsulation: hiding implementation details

• Used header file conventions and the “static” specifier to separate
private functions from public functions

• Cast structures to void* to hide implementation-specific details
(generalize)

 Abstraction: associating behavior with encapsulated state

• Function that operate on a LinkedList were not really tied to the
linked list structure

• We passed a linked list to a function, rather than invoking a method
on a linked list instance

4

CSE333, Spring 2019L09: C++ Intro

C++

 A major addition is support for classes and objects!

 Classes

• Public, private, and protected methods and instance variables

• (multiple!) inheritance

 Polymorphism

• Static polymorphism: multiple functions or methods with the same
name, but different argument types (overloading)

– Works for all functions, not just class members

• Dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

5

CSE333, Spring 2019L09: C++ Intro

C

 We had to emulate generic data structures
 Generic linked list using void* payload

 Pass function pointers to generalize different “methods” for data
structures

• Comparisons, deallocation, pickling up state, etc.

6

CSE333, Spring 2019L09: C++ Intro

C++

 Supports templates to facilitate generic data types

 Parametric polymorphism – same idea as Java generics, but
different in details, particularly implementation

 To declare that x is a vector of ints: vector<int> x;

 To declare that x is a vector of floats: vector<float> x;

 To declare that x is a vector of (vectors of floats):
vector<vector<float>> x;

7

CSE333, Spring 2019L09: C++ Intro

C

 We had to be careful about namespace collisions

 C distinguishes between external and internal linkage

• Use static to prevent a name from being visible outside a source
file (as close as C gets to “private”)

• Otherwise, name is global and visible everywhere

 We used naming conventions to help avoid collisions in the global
namespace

• e.g. LLIteratorNext vs. HTIteratorNext, etc.

8

CSE333, Spring 2019L09: C++ Intro

C++

 Permits a module to define its own namespace!
 The linked list module could define an “LL” namespace while the

hash table module could define an “HT” namespace

 Both modules could define an Iterator class

• One would be globally named LL::Iterator and the other would
be globally named HT::Iterator

 Classes also allow duplicate names without collisions

 Namespaces group and isolate names in collections of classes and
other “global” things (somewhat like Java packages)

9

CSE333, Spring 2019L09: C++ Intro

C

 C does not provide any standard data structures

 We had to implement our own linked list and hash table

 As a C programmer, you often reinvent the wheel… poorly

• Maybe if you’re clever you’ll use somebody else’s libraries

• But C’s lack of abstraction, encapsulation, and generics means you’ll
probably end up tweak them or tweak your code to use them

10

CSE333, Spring 2019L09: C++ Intro

C++

 The C++ standard library is huge!

 Generic containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

• And iterators for most of these

 A string class: hides the implementation of strings

 Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

 And more…

11

CSE333, Spring 2019L09: C++ Intro

C

 Error handling is a pain

 Have to define error codes and return them

 Customers have to understand error code conventions and need
to constantly test return values

 e.g. if a() calls b(), which calls c()

• a depends on b to propagate an error in c back to it

12

CSE333, Spring 2019L09: C++ Intro

C++

 Supports exceptions!
 try / throw / catch

 If used with discipline, can simplify error processing

 But, if used carelessly, can complicate memory management

• Consider: a() calls b(), which calls c()

– If c() throws an exception that b() doesn’t catch, you might not get a
chance to clean up resources allocated inside b()

 We will largely avoid in 333

 You still benefit from having more interpretable errors!

13

CSE333, Spring 2019L09: C++ Intro

How to Think About C++

17

Set of styles

and ways to

use C++

Set of styles

and ways to

use C

Good styles

and robust

engineering

practices

Style

guides

CSE333, Spring 2019L09: C++ Intro

Or…

18

In the hands of a

disciplined programmer,

C++ is a powerful tool

But if you’re not so

disciplined about how you

use C++…

CSE333, Spring 2019L09: C++ Intro

Hello World in C

 You never had a chance to write this!
 Compile with gcc:

 Based on what you know now, describe to your neighbor
everything that goes on in the execution of this “simple” program

• Be detailed!

19

#include <stdio.h> // for printf()

#include <stdlib.h> // for EXIT_SUCCESS

int main(int argc, char** argv) {

printf("Hello, World!\n");

return EXIT_SUCCESS;

}

helloworld.c

gcc -Wall -g -std=c11 -o hello helloworld.c

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 Looks simple enough…
 Compile with g++ instead of gcc:

 Let’s walk through the program step-by-step to highlight some
differences

20

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

g++ -Wall -g -std=c++11 -o helloworld helloworld.cc

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 iostream is part of the C++ standard library

 Note: you don’t write “.h” when you include C++ standard library
headers

• But you do for local headers (e.g. #include "ll.h")

 iostream declares stream object instances in the “std”
namespace

• e.g. std::cin, std::cout, std::cerr

21

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 cstdlib is the C standard library’s stdlib.h

 Nearly all C standard library functions are available to you

• For C header foo.h, you should #include <cfoo>

 We include it here for EXIT_SUCCESS, as usual

22

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 C++ distinguishes between objects and primitive types

 These include the familiar ones from C:
char, short, int, long, float, double, etc.

 C++ also defines bool as a primitive type (woo-hoo!)

• Use it!

23

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 std::cout is the “cout” object instance declared by
iostream, living within the “std” namespace

 C++’s name for stdout

 std::cout is an object of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/

 Used to format and write output to the console

 The entire standard library is in the namespace std

24

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

http://www.cplusplus.com/reference/ostream/ostream/

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 “<<” is an operator defined by the C++ language

 Defined in C as well: usually it bit-shifts integers (in C/C++)

 C++ allows classes and functions to overload operators!

• Here, the ostream class overloads “<<”

• i.e. it defines different member functions (methods) that are invoked
when an ostream is the left-hand side of the << operator

25

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 ostream has many different methods to handle <<

 The functions differ in the type of the right-hand side (RHS) of <<

 e.g. if you do std::cout << "foo"; , then C++ invokes
cout’s function to handle << with RHS char*

26

std::cout << "foo";

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 The ostream class’ member functions that handle <<
return a reference to themselves
 When std::cout << "Hello, World!"; is evaluated:

• A member function of the std::cout object is invoked

• It buffers the string "Hello, World!" for the console

• And it returns a reference to std::cout

27

std::cout << "Hello, World!";

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Hello World in C++

 Next, another member function on std::cout is
invoked to handle << with RHS std::endl

 std::endl is a pointer to a “manipulator” function

• This manipulator function writes newline ('\n') to the ostream it
is invoked on and then flushes the ostream’s buffer

• This enforces that something is printed to the console at this point

28

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Wow…

 You should be surprised and scared at this point

 C++ makes it easy to hide a significant amount of complexity

• It’s powerful, but really dangerous

• Once you mix everything together (templates, operator overloading,
method overloading, generics, multiple inheritance), it can get really
hard to know what’s actually happening!

29

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2019L09: C++ Intro

Let’s Refine It a Bit

 C++’s standard library has a std::string class

 Include the string header to use it

• Seems to be automatically included in iostream on CSE Linux
environment (C++11) – but include it explicitly anyway if you use it

 http://www.cplusplus.com/reference/string/

30

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello, World!");

cout << hello << endl;

return EXIT_SUCCESS;

}

helloworld2.cc

http://www.cplusplus.com/reference/string/

CSE333, Spring 2019L09: C++ Intro

Let’s Refine It a Bit

 The using keyword introduces a namespace (or part of)
into the current region

 using namespace std; imports all names from std::

 using std::cout; imports only std::cout
(used as cout)

31

using namespace std;

using std::cout;

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello, World!");

cout << hello << endl;

return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Spring 2019L09: C++ Intro

Let’s Refine It a Bit

 Benefits of

 We can now refer to std::string as string, std::cout
as cout, and std::endl as endl

32

using namespace std;

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello, World!");

cout << hello << endl;

return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Spring 2019L09: C++ Intro

Let’s Refine It a Bit

 Here we are instantiating a std::string object on the
stack (an ordinary local variable)
 Passing the C string "Hello, World!" to its constructor

method

 hello is deallocated (and its destructor invoked) when main
returns

33

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello, World!");

cout << hello << endl;

return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Spring 2019L09: C++ Intro

Let’s Refine It a Bit

 The C++ string library also overloads the << operator

 Defines a function (not an object method) that is invoked when
the LHS is ostream and the RHS is std::string

• http://www.cplusplus.com/reference/string/string/operator<</

34

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello, World!");

cout << hello << endl;

return EXIT_SUCCESS;

}

helloworld2.cc

http://www.cplusplus.com/reference/string/string/operator<</

CSE333, Spring 2019L09: C++ Intro

String Concatenation

 The string class overloads the “+” operator

 Creates and returns a new string that is the concatenation of the
LHS and RHS

35

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello");

hello = hello + ", World!";

cout << hello << endl;

return EXIT_SUCCESS;

}

concat.cc

CSE333, Spring 2019L09: C++ Intro

String Assignment

 The string class overloads the “=” operator

 Copies the RHS and replaces the string’s contents with it

36

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello");

hello = hello + ", World!";

cout << hello << endl;

return EXIT_SUCCESS;

}

concat.cc

CSE333, Spring 2019L09: C++ Intro

String Manipulation

 This statement is complex!

 First “+” creates a string that is the concatenation of hello’s
current contents and ", World!"

 Then “=” creates a copy of the concatenation to store in hello

 Without the syntactic sugar:

• hello.operator=(hello.operator+(", World!"));
37

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello("Hello");

hello = hello + ", World!";

cout << hello << endl;

return EXIT_SUCCESS;

}

concat.cc

hello.operator=(hello.operator+(", World!"));

CSE333, Spring 2019L09: C++ Intro

Stream Manipulators

 iomanip defines a set of stream manipulator functions

 Pass them to a stream to affect formatting

• http://www.cplusplus.com/reference/iomanip/

• http://www.cplusplus.com/reference/ios/

38

#include <iostream>

#include <cstdlib>

#include <iomanip>

using namespace std;

int main(int argc, char** argv) {

cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

cout << hex << 16 << " " << 13 << endl;

cout << dec << 16 << " " << 13 << endl;

return EXIT_SUCCESS;

}

manip.cc

http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/ios/

CSE333, Spring 2019L09: C++ Intro

Stream Manipulators

 setw(x) sets the width of the next field to x

 Only affects the next thing sent to the output stream (i.e. it is not
persistent)

39

#include <iostream>

#include <cstdlib>

#include <iomanip>

using namespace std;

int main(int argc, char** argv) {

cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

cout << hex << 16 << " " << 13 << endl;

cout << dec << 16 << " " << 13 << endl;

return EXIT_SUCCESS;

}

manip.cc

CSE333, Spring 2019L09: C++ Intro

Stream Manipulators

 hex, dec, and oct set the numerical base for integers
output to the stream

 Stays in effect until you set the stream to another base (i.e. it is
persistent)

40

#include <iostream>

#include <cstdlib>

#include <iomanip>

using namespace std;

int main(int argc, char** argv) {

cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

cout << hex << 16 << " " << 13 << endl;

cout << dec << 16 << " " << 13 << endl;

return EXIT_SUCCESS;

}

manip.cc

CSE333, Spring 2019L09: C++ Intro

C and C++

 C is (roughly) a subset of C++
 You can still use printf – but bad style in ordinary C++ code

 Can mix C and C++ idioms if needed to work with existing code,
but avoid mixing if you can

• Use C++(11)

41

#include <cstdio>

#include <cstdlib>

int main(int argc, char** argv) {

printf("Hello from C!\n");

return EXIT_SUCCESS;

}

helloworld3.cc

CSE333, Spring 2019L09: C++ Intro

Reading

 std::cin is an object instance of class istream

 Supports the >> operator for “extraction”

• Can be used in conditionals – (std::cin>>num) is true if
successful

 Has a getline() method and methods to detect and clear
errors

42

#include <iostream>

#include <cstdlib>

using namespace std;

int main(int argc, char** argv) {

int num;

cout << "Type a number: ";

cin >> num;

cout << "You typed: " << num << endl;

return EXIT_SUCCESS;

}

echonum.cc

CSE333, Spring 2019L09: C++ Intro

Peer Instruction Question

 How many different versions of << are called?

 For now, ignore manipulator functions

 Vote at http://PollEv.com/justinh

 Also, what is output?

A. 1

B. 2

C. 3

D. 4

E. We’re lost…

43

#include <iostream>

#include <cstdlib>

#include <string>

#include <iomanip>

using namespace std;

int main(int argc, char** argv) {

int n = 172;

string str("m");

str += "y";

cout << str << hex << setw(2)

<< 15U << n << "e!" << endl;

return EXIT_SUCCESS;

}

msg.cc

http://pollev.com/justinh

CSE333, Spring 2019L09: C++ Intro

Extra Exercise #1

 Write a C++ program that uses stream to:

 Prompt the user to type 5 floats

 Prints them out in opposite order with 4 digits of precision

44

