W UNIVERSITY of WASHINGTON

LO7: Makefiles, File 1/0

Makefiles, File 1/O
CSE 333 Spring 2019

Instructor: Justin Hsia

Teaching Assistants:
Aaron Johnston
Forrest Timour

Pat Kosakanchit
Travis McGaha

Andrew Hu
Kevin Bi
Renshu Gu

Daniel Snitkovskiy
Kory Watson
Tarkan Al-Kazily

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON LO7: Makefiles, File /O CSE333, Spring 2019

Administrivia

+» Exercise 6 out today, due Wednesday morning

+» No exercise due Friday! Exercise 7 will be released on
Thursday and due the following Monday (4/22)

+» Exercise Grading

"= New (imperfect) scale: Correctness [0-3], Tools [0-2], Style [0-3]

= Can submit regrade requests via Gradescope for a few days after
scores released. Can ask about it first on Piazza.

+» Homework O grades out, pull repo to see feedback

+» Homework 1 due Thursday (4/18) at 11:59 pm
= Submit via GitLab (i.e. commit/push changes, then push tag)

W UNIVERSITY of WASHINGTON LO7: Makefiles, File I/O CSE333, Spring 2019

Lecture Outline

+» Makefile Basics
» File I/0O with the C standard library
+» System Calls

W UNIVERSITY of WASHINGTON LO7: Makefiles, File I/0

CSE333, Spring 2019

make Basics

+» A makefile contains a bunch of triples:
[target: sources J

«<Tab—> command

"= Colon after target is required
" Command lines must start with a TAB, NOT SPACES

= Multiple commands for same target are executed in order
- Can split commands over multiple lines by ending lines with “\’

+» Example: [foo.o0: foo.c foo.h bar.h
gcc —-Wall -o foo.o -c foo.c

W UNIVERSITY of WASHINGTON LO7: Makefiles, File 1/0

CSE333, Spring 2019

Using make

bash% make -f <makefileName> target

« Defaults:

= |f no —£ specified, use a file named Makefile
" |f no target specified, will use the first one in the file

= Will interpret commands in your default shell
- Set SHELL variable in makefile to ensure

+» Target execution:

= Check each source in the source list:

- If the source is a target in the Makefile, then process it recursively
- |f some source does not exist, then error

- If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON LO7: Makefiles, File /O

make Variables

« You can define variables in a makefile:

= All values are strings of text, no “types”
= Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=, or

whitespace
r ~
s+ Example: | cC = gcc
CFLAGS = -Wall -std=cll
foo.0: foo.c foo.h bar.h
X S(CC) S(CFLAGS) -o foo.o -c foo.c)

+» Advantages:
= Easy to change things (especially in multiple commands)

® Can also specify on the command line:
(e.g. make foo.o CC=clang CFLAGS=-qg) ;

W UNIVERSITY of WASHINGTON

LO7: Makefiles, File 1/0

CSE333, Spring 2019

More Variables

« It’s common to use variables to hold lists of filenames:

4)
ORJFILES = fo0.0 bar.o baz.o

widget: 5 (OBJFILES)

gcc -o widget $ (OBJFILES)
clean:

rm S (OBJFILES) widget *~

_

« Cclean is aconvention

"= Remove generated files to “start over” from just the source

= |t's “funny” because the target doesn’t exist and there are no
sources, but it works because:

- The target doesn’t exist, so it must be “remade” by running the
command

- These “phony” targets have several uses, such as “all”...

W UNIVERSITY of WASHINGTON LO7: Makefiles, File /0

“all” Example

CSE333, Spring 2019

(all: prog B.class somelLib.a

notice no commands this time

prog: foo.o bar.o main.o
gcc -0 prog foo.o bar.o main.o

B.class: B.java
javac B.java

somelib.a: foo.o baz.o
ar r foo.o baz.o

foo.0: foo.c foo.h headerl.h header?2.h
gcc —-c¢ -Wall foo.c

similar targets for bar.o, main.o, baz.o,

etc. ..

W UNIVERSITY of WASHINGTON LO7: Makefiles, File /0 CSE333, Spring 2019

Writing a Makefile Example

+» “talk” program (find files on web with lecture slides)

[main.c] [Speak.h] [Speak.c] [shout.h] [shout.c]

W UNIVERSITY of WASHINGTON LO7: Makefiles, File /0 CSE333, Spring 2019

Revenge of the Funny Characters

+» Special variables:
= SQ fortarget name
= sS4 for all sources
= $< for left-most source

= |ots more! —see the documentation

«» Examples: ~

(# CC and CFLAGS defined above
widget: foo.o bar.o

S (CC) $(CFLAGS) -o s@ s~
foo.0: foo.c foo.h bar.h

$(CC) S(CFLAGS) -c $<
_ J

10

W UNIVERSITY of WASHINGTON LO7: Makefiles, File 1/O CSE333, Spring 2019

And more...

D)

>

There are a lot of “built-in” rules — see documentation

L)

‘0

+» There are “suffix” rules and “pattern” rules

" Example: 3.class: %.java
javac S$S< # we need the S< here

D)

>

Remember that you can put any shell command — even
whole scripts!

You can repeat target names to add more dependencies

o0

R

%

Often this stuff is more useful for reading makefiles than
writing your own (until some day...)

L)

*

11

W UNIVERSITY of WASHINGTON LO7: Makefiles, File I/O CSE333, Spring 2019

Lecture Outline

+» Makefile Basics
+ File I/0O with the C standard library
+» System Calls

[These are essential material for the next part of the project (hw2)!]

12

W UNIVERSITY of WASHINGTON LO7: Makefiles, File I/O CSE333, Spring 2019

Remember This Picture?

A brief

. . C application C++ application Java application
diversion...

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

13

W UNIVERSITY of WASHINGTON LO7: Makefiles, File I/O CSE333, Spring 2019

File 1/O

+» We'll start by using C’s standard library
" These functions are part of glibc on Linux
" They are implemented using Linux system calls

«» C’'s stdio defines the notion of a stream

= A way of reading or writing a sequence of characters to and from
a device

" Can be either text or binary; Linux does not distinguish
= |s buffered by default; 1ibc reads ahead of your program

" Three streams provided by default: stdin, stdout, stderr
- You can open additional streams to read and write to files

= (Cstreams are manipulated with a FILE* pointer, which is
defined in stdio.h

14

W UNIVERSITY of WASHINGTON LO7: Makefiles, File /0 CSE333, Spring 2019

C Stream Functions

%~ Some stream functions (complete listin stdio.h):

-[FILE* fopen (filename, mode); }

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);}

 Closes the specified stream (and file)

-[int fprintf (stream, format, ...);}

- Writes a formatted C string
— printf (...); isequivalentto fprintf (stdout, ...);

-[int fscanf (stream, format, ...);}

- Reads data and stores data matching the format string

15

W UNIVERSITY of WASHINGTON LO7: Makefiles, File I/O CSE333, Spring 2019

C Stream Functions

%~ Some stream functions (complete listin stdio.h):

-[FILE* fopen (filename, mode); }

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);}

 Closes the specified stream (and file)

-[Size_t fwrite (ptr, size, count, stream);}

- Writes an array of count elements of size bytes from ptr to stream

-[size_t fread (ptr, size, count, stream);]

- Reads an array of count elements of size bytes from stream to ptr

16

W UNIVERSITY of WASHINGTON LO7: Makefiles, File /0 CSE333, Spring 2019

Error Checking/Handling

+» Some error functions (complete list in stdio.h):

0 [void perror (message) ; }

« Prints message and error message related to errno to stderr

-[int ferror(stream);}

- Checks if the error indicator associated with the specified stream is
set

= [int clearerr (stream); }

- Resets error and eof indicators for the specified stream

17

C Streams Example

cp_example.c

[#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char** argv) {
FILE *fin, *fout;
char readbuf [READBUFSIZE];
size t readlen;

}

// Open the input file
fin = fopen(argv([1l], "rb"); // "rb" -> read, binary mode
if (fin == NULL) {

fprintf (stderr, "%$s -- ", argv([l]);

perror ("fopen for read failed");

return EXIT FAILURE;

1f (argc !'= 3) {
fprintf (stderr, "usage: ./cp example infile outfile\n");
return EXIT FAILURE; // defined in stdlib.h

~

W UNIVERSITY of WASHINGTON LO7: Makefiles, File I/O CSE333, Spring 2019

18

W UNIVERSITY of WASHINGTON LO7: Makefiles, File I/O CSE333, Spring 2019

C Streams Example

cp_example.c

rint main (int argc, char** argv) {)

// previous slide’s code

// Open the output file
fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode
1f (fout == NULL) {

fprintf (stderr, "%Ss -- ", argv([2]);

perror ("fopen for write failed");

return EXIT FAILURE;

}

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
1f (fwrite (readbuf, 1, readlen, fout) < readlen) {
perror ("fwrite failed");
return EXIT FAILURE;

// next slide’s code

LO7: Makefiles, File 1/0

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON

C Streams Example
cp_example.c

rint main (int argc, char** argv) {
// two slides ago’s code

// previous slide’s code

// Test to see 1f we encountered an error while reading

1f (ferror (fin)) {
perror ("fread failed");
return EXIT FAILURE;

}

fclose (fin) ;
fclose (fout) ;

return EXIT_SUCCESS;

20

W UNIVERSITY of WASHINGTON LO7: Makefiles, File I/0O CSE333, Spring 2019

Extra Exercise #1

+» Write a program that:
= Uses argc/argv to receive the name of a text file
= Reads the contents of the file a line at a time
" Parses each line, converting textintoa uint32 t
" Builds an array of the parsed uint32 t’s

O
Sorts the array bash$ cat in.txt

" Prints the sorted array to stdout 1213
3231
000005
. 52
+» Hint: use man to read about bash$./extral in.txt
getline, sscanf, reallog, 52
o)
and gsort 1213

3231
bash$

21

W UNIVERSITY of WASHINGTON LO7: Makefiles, File I/0O CSE333, Spring 2019

Extra Exercise #2

+» Write a program that:

= Loops forever; in each loop:
- Promptthe userto BERARERE

. . 00000010
input a filename 00000020

. 00000030

- Reads a filename 00000040
- 00000050

from stdin 00000080
00000070

- Opens and reads 00000080
the file 00000090
00000040

« Prints its contents ce. ete
to stdout in the format shown:

+ Hints:
" Use man toread about fgets

= QOr, if you’re more courageous, tryman 3 readline tolearn about
libreadline.a and Google to learn how to link to it

22

