W UNIVERSITY of WASHINGTON LO1: Intro, C

Intro, C refresher
CSE 333 Spring 2019

Instructor: Justin Hsia

Teaching Assistants:

Aaron Johnston Andrew Hu
Forrest Timour Kevin Bi
Pat Kosakanchit Renshu Gu

Travis McGaha

Daniel Snitkovskiy
Kory Watson
Tarkan Al-Kazily

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Lecture Outline

« Course Introduction

«» Course Policies
" https://courses.cs.washington.edu/courses/cse333/19sp/syllabus/

< Clntro

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Introductions: Course Staff 7

+ Your Instructor: just call me Justin
" From California (UC Berkeley and the Bay Area)
= | like: teaching, the outdoors, board games, and ultimate
= Excited to be teaching this course for the 2" time!

{ = s [o
e | e Yd s)
h -
Y 7
L MAST % S i
" R . 5 e Ry B,
N g 3 I NG Y, .
| a1 i1 R~
P 5 "X
LN - S & I8
. — 3 L
- f a £)
.. | gl p = =
F e k) y , 3 v -
- ¥ .

= Available in section, office hours, and discussion group

" An invaluable source of information and help

« Get to know us

= We are here to help you succeed!

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Introductions: Students

+» ~160 students registered, split across two lectures

" There are no overload forms or waiting lists for CSE courses
- Majors must add using the UW system as space becomes available

- Non-majors should work with undergraduate advisors to handle
enrollment details (over in the new Gates Center!)

+» Expected background

" Prereq: CSE 351 - C, pointers, memory model, linker, system calls
" CSE 391 or Linux skills needed for CSE 351 assumed

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Course Map: 100,000 foot view

I 3
C application C++ application Java application X, %31
C standard C++ STL/boost/
library (glibc) standard librar JRE
OS / app interface ____y_g_________y ________ Y

(system calls)

HW/SW interface @ " i
(x86 + devices) $H1

hardware

CPU memory storage network
GPU clock audio radio peripherals

W UNIVERSITY of WASHINGTON LO1: Intro, C

CSE333, Spring 2019

Systems Programming

+» The programming skills, engineering discipline, and
knowledge you need to build a system

" Programming: C/C++

' testing, debugging, performance analysis

= Knowledge: long list of interesting topics

- Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, ...

- Most important: a deep(er) understanding of the “layer below”

W UNIVERSITY of WASHINGTON LO1: Intro, C

Discipline?!?

+ Cultivate good habits, encourage clean code
&' Coding style conventions

= Unit testing, code coverage testing, regression testing

®= Documentation (code comments, design docs)
" Code reviews

+» Will take you a lifetime to learn

" But oh-so-important, especially for systems code
- Avoid write-once, read-never code

CSE333, Spring 2019

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Lecture Outline

« Course Introduction

«» Course Policies
" https://courses.cs.washington.edu/courses/cse333/19sp/syllabus/

= Digest here, but you must read the full details online

<« Clntro

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Communication

Website: http://cs.uw.edu/333

= Schedule, policies, materials, assignments, etc.

L)

>

Discussion: http://piazza.com/washington/spring2019/cse333

L)

0‘0

= Announcements made here
= Ask and answer questions — staff will monitor and contribute

R

%

Office Hours: spread throughout the week

= Can e-mail/private Piazza post to make individual appointments

)

0‘0

Anonymous feedback:

"= Comments about anything related to the course where you would
feel better not attaching your name

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Course Components

Lectures (28)

" |ntroduce the concepts; take notes!!!

% Sections (10)

= Applied concepts, important tools and skills for assignments,
clarification of lectures, exam review and preparation

D)

0’0

‘0

L)

*

Programming Exercises (19)

" One for most lectures, due the morning before the next lecture
= New grading scheme (correctness, tools check, code style/quality)

= Programming Projects (0+4)

= Warm-up, then 4 “homework” that build on each other

‘0

o

L)

Exams (2)
= Midterm: Friday, May 10, 5:00-6:10 [joint]
" Final: Wednesday, June 12, 12:30-2:20 [joint]

10

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Grading

Exercises: 20% total

= Submitted via GradeScope (account info mailed later today)

D)

0’0

" @Graded on correctness and style by TAs
Projects: 40% total

= Submitted via GitLab; must tag commit that you want graded

D)

0’0

= Binaries provided if you didn’t get previous part working

Exams: Midterm (15%) and Final (20%)

= Several old exams on course website
EPA: Effort, Participation, and Altruism (5%)

D)

0’0

)

0‘0

More details on course website

" You must read the syllabus there — you are responsible for it

R

*

11

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Deadlines and Student Conduct

+ Late policies

= Exercises: no late submissions accepted, due 11 am

" Projects: 4 late day “tokens” for quarter, max 2 per homework

" Need to get things done on time — difficult to catch up!

+» Academic Integrity (read the full policy on the web)
= | trust you implicitly and will follow up if that trust is violated

" |nshort: don’t attempt to gain credit for something you didn’t do
and don’t help others do so either

" This does not mean suffer in silence — learn from the course staff
and peers, talk, share ideas; but don’t share or copy work that is
supposed to be yours

12

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Hooked on Gadgets

+» Gadgets reduce focus and learning
= Bursts of info (e.g. emails, IMs, etc.) are addictive

"= Heavy multitaskers have more trouble focusing and shutting out
irrelevant information

« http://www.npr.org/2016/04/17/474525392/attention-students-put-
vour-laptops-away

= Seriously, you will learn more if you use paper instead!!!

+» Non-disruptive use okay
®= NO audio allowed (mute phones & computers)
= Stick to side and back seats

= Stop/move if asked by fellow student

13

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Lecture Outline

« Course Introduction

«» Course Policies
" https://courses.cs.washington.edu/courses/cse333/19sp/syllabus/

+ Clintro
= Workflow, Variables, Functions

14

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

SECOND EDITION

THE

C

+» Created in 1972 by Dennis Ritchie PROGRAMMING
LANGUAGE
= Designed for creating system software s AN

1CE HALL SOFTWARE SERIES

= Portable across machine architectures
" Most recently updated in 1999 (C99) and 2011 (C11)

«» Characteristics

= “Low-level” language that allows us to exploit underlying features
of the architecture — but easy to fail spectacularly (!)

" Procedural (not object-oriented)
= “Weakly-typed” or “type-unsafe”
= Small, basic library compared to Java, C++, most others....

15

W UNIVERSITY of WASHINGTON LO1: Intro, C

Generic C Program Layout

CSE333, Spring 2019

r

-

#include <system files>
#include "local files"

#define macro name macro expr

/* declare functions */
/* declare external variables & structs */

int main(int argc, char* argvl[])

/* the innards */

/* define other functions */

{

16

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Ajvan‘\'aﬁcj '@Pe&Sy o ke‘/'ﬂmrzx CLOVS P&SSQ() &S df-\o(j

'@rlﬂlue - an\l “V‘MLCT
P\I}&Jvan‘hgeg ;@‘lr\pu‘l' ckeckin5 - lwzuen‘}' User misux)se_

us«be mess 6:5&

@AO\‘!V\ COnVersbn — ;F hs" .A""EAAQJ“'D

C Syntax: main

+» To get command-line arguments in main, use: be dars
[int main (int argc, char*Aargv[]) }
‘ | Some &s
instesd of: int m\v\() oc¥r oo

«» What does this mean?

" argc contains the number of strings on the command line (the

executable name counts as one, plus one for eacp argument).

, needeh bewuse C doemt trak arcay lenghs. _
u dI'gV IS an array contailning pointers to tﬁe arguments as strings

(more on pointers later)
/ Hr?nﬁ or Y‘W\kr?

ENCIIEE S foo hello (87

" argc = 3

" argv[0]="foo", argv[1l]="hello", argv[2]="87"

17

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

C Workflow

Editor (emacs, vi) or IDE (eclipse) &

(———— ——@ ——— Source files
) (.c, .h)

Statically-linked

libraries
UNK\\\\ LINK
LINK lLOAD ////x
wi
bar] (\ovocess) PN

EXECUTE, DEBUG, ...

18

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

C to Machine Code

(void sumstore (int x, 1int vy, N
int* dest) { C source file
*dest = x + vy; (sumstore.c)
\J Y,
\C compiler (gcc -S) C compiler
(sumstore: A (gce —c)
addl %edi, %esi Assembly file
mov 1 %esi, (%rdx) (sumstore. s)
_ ret)

\Assembler (gcc —-coras)

(400575: 01 fe
89 32
c3

Machine code
(sumstore. o)

W UNIVERSITY of WASHINGTON LO1: Intro, C

CSE333, Spring 2019

When Things Go South...

+ Errors and Exceptions

= Cdoes not have exception handling (no try/catch)

" Errors are returned as integer error codes from functions
= Because of this, error handling is ugly and inelegant

+» Crashes

= |f you do something bad, you hope to get a “segmentation fault”
(believe it or not, this is the “good” option)

20

W UNIVERSITY of WASHINGTON

LO1: Intro, C CSE333, Spring 2019

Java vs. C (351 refresher)

+ Are Java and C mostly similar (S) or significantly different

(D) in the following categories?
= List any differences you can recall (even if you put ‘S’)

Language Feature

Control structures

hese ore T exhaustive

S/D Differences in C

S

no boslean —> O 15 false gu"b (.Abr\"\' uue)

else i ‘l’rug

Primitive datatypes

S/D

ves pmh"'eﬂ, no String, yes uhsif)he&
A}Hmh';\' dd& U7A‘|'L\5 <_e.c,. c\\ar)

Memory management

no go.rLase, colection
e*?\rcﬂ' re{“es‘\'.ti mallsc /"Frte,

Operators S Java hay D7
C hags =2
Casting D C has no c&s‘h'\j \'Q_{+kf€\iovx$
Arrays ”> C hes no lenﬁk or bounds cked:if_\j

21

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Primitive Typesin C

+ Integer types C Data Type 32-bit 64-bit printf
" char, 1nt char| 1 1 Sc
short int 2 2 shd
. . unsigned short int 2 2 shu
+ Floating point v RETVED
" float,double unsigned int | 4 1 $u
long int 1 8 s1d
. long 1 Int 8 8 $1l1ld
= Modifiers Elph= -
. float 4 4 il
" short [int] double | 8 8 51f
"= long [int, double] long double | 12 16 SLf
" signed [char, int] pointer | A 8 5P

" unsigned [char, int] Typical sizes —see sizeofs.c

22

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

C99 Extended Integer Types

+ Solves the conundrum of “how bigisan long int?”

4l N\
P #include <stdint.h>
vold foo (void) {
int8 t a; // exactly 8 bits, signed
intlé t b; // exactly 16 bits, signed
int32 t ¢; // exactly 32 bits, signed
int@d t d; // exactly Gd bits, signed
uint8 t w; // exactly 8 bits, unsigned
}
- y
‘Fine 'For Qe\er‘ac C Cop\e
[void sumstore (1nt x, int y, int* dest) J

needed for \\.syﬁeM” Code — p‘CGJQ wie in 2331
[void sumstore (int32 t x, int32 t y, int32 t* dest) { J

23

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Basic Data Structures

+» Cdoes not support objects!!!

J/
0’0

Arrays are contiguous chunks of memory
= Arrays have no methods and do not know their own length
® Can easily run off ends of arrays in C—security bugs!!!

J/
0’0

Strings are null-terminated char arrays
= Strings have no methods, but st ring. h has helpful utilities

char* x = "hello\n"; x = hle | 1| 1| o]l\n (\;6]

+ Structs are the most object-like feature, but are just collections
of fields — no “methods” or functions

24

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Function Definitions

« @Generic format:

-
returnType fname (type paraml, .., type paramN) {\

// statements

4 ,)
// sum of integers from 1 to max

int sumTo(int max) {
int 1, sum = 0;

for (i = 1; 1 <= max; i++) {
sum += 1i;

}

return sum;

25

W UNIVERSITY of WASHINGTON

LO1: Intro, C CSE333, Spring 2019

Function Ordering

% You shouldn’t call a function that hasn’t been declared yet

sum_badorder.c |

Note: code examples fro
slides are posted on the
course website for you {o
experiment with! fix

C compiler goes |Me-l;.\/-|-,,\e_:

%

!
|

/;include <stdio.h> <J

int main(int argc, char** argv) {éJ
printf ("sumTo (5) is: %d\n", sumTo(5));QJ
return 0O; 7171

} .

// sum of integers from 1 to max
int sumTo (int max) { é—-aefhu~kae
int 1, sum = 0O;

for (1 = 1; i <= max; i++) {
sum += 1i;
}

return sum;

~

26

W UNIVERSITY of WASHINGTON

LO1: Intro, C

Solution 1: Reverse Ordering

+» Simple solution; however, imposes ordering restriction on

writing functions (who-calls-what?)

sum_betterorder.c

CSE333, Spring 2019

-

#include <stdio.h>

// sum of integers
int sumTo (int max)
int 1, sum = 0O;

for (1 = 1; 1 <=
sum += 1;
}

return sum;

}

int main(int argc,
printf ("sumTo (5)
return 0O;

}

N\

from 1 to max

de—rimz&\ £t I_V_(

max,; 1i++)

Smnlﬂﬁv

char** argv)
: $d\n", sumTo (5));

W UNIVERSITY of WASHINGTON

LO1: Intro, C

CSE333, Spring 2019

Solution 2: Function Declaration

+» Teaches the compiler arguments and return types;
function definitions can then be in a logical order

sum_declared.c

Jec\ared here —]

>
a\e—Q\ ~e
\~e

[#include <Stdio.(})10§am€‘,er romel OP-Hona»\ N
174

. int sumTo (int); // func prototype

> () QL p _yp - \\as §e€"\

int main(int argc,
printf ("sumTo (5)
return 0O;

}

// sum of integers
int sumTo (int max)
int 1, sum 0,
for (1 1; 1 <=

sum += 1;

}

return sum;

}

char** argv) { &// alvendyy

is: %d\n", sumTo(5));

from 1 to max

{

max,; 1i++)

{

28

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Function Declaration vs. Definition

+» C/C++ make a careful distinction between these two

+» Definition: the thing itself
= e.g. code for function, variable definition that creates storage
" Must be exactly one definition of each thing (no duplicates)

+» Declaration: description of a thing

= e.g. function prototype, external variable declaration
- Often in header files and incorporated via #include

- Should also #include declaration in the file with the actual
definition to check for consistency

" Needs to appear in all files that use that thing
- Should appear before first use

29

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Multi-file C Programs

Csource file 1| void sumstore (int x, int y, 1int* dest) { &Jdebin

(sumstore.c) rdest = x + y; heve
}
e - A
Csource file 2 [#include <stdio.h> optional —
= Y
(sumnum.c) void sumstore (int x, int y, int* &eSt);édACd“mA
here

int main(int argc, char** argv) {
int z, x = 351, y = 333;
sumstore (x, y, &z)§&— el here
printf ("%d + %d = %d\n", x, y, 2);
return 0O;

\} .

Compile together: bethFles irdudzl dwing complation

$ gcc -0 sumnum ‘sumnum.c sumstore.c
30

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Compiling Multi-file Programs

+~ The linker combines multiple object files plus statically-
linked libraries to produce an executable

" |ncludes many standard libraries (e.g. 1ibc, crt1l)
- Alibrary is just a pre-assembled collection of . o files

cCc —-C
[sumstore.c} b[sumstore.o

1d or { J
sumnum
gcc

] gcc -c
sumnum. C) sumnum. o

libraries
(e.g. 11bc)

31

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

Review Question

+» Which of the following statements is FALSE?
= Vote at http://PollEv.com/justinh

A.

With the standard main () syntax, It is always safe
touse argv[0]. E UM be e rame of Hhe execdble

[B.

We can’t use uint64_t on a 32-bit machine

because there isn’t a C integer primitive of that
'H’\erc iy —2 [o:r\s 18:5 T o
length.

Using function declarations is beneficial to both
s'lvr\gcz —'Flwcyl‘ole OfaeV;r\S C“(Ahd’%nj

single- and multi-file C programs. matte o e defurons in bther frles

. When compiling multi-file programs, not all linking is

° Loo.Aevf A e l: ':.W'
done by the Linker. Cored Commcres)

We’re lost...

32

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2019

To-do List

L 4

Make sure you’re registered on Canvas, Piazza,
Gradescope, and Poll Everywhere

= All user IDs should be your uw.edu email address

Explore the website thoroughly: http://cs.uw.edu/333

Computer setup: CSE lab, attu, or CSE Linux VM

Exercise O is due 11 am on Wednesday

" Find exercise spec on website, submit via Gradescope

« Course “CSE 333 Spring 19”7, Assignment “ex0 - Exercise 0”, then drag-
n-drop file(s)! Ignore any messages about autograding.

= Sample solution will be posted Wednesday afternoon

33

