
2

Problem 1: Multiple Choice Madness (24 points)

Circle exactly one answer for each of the following questions:

i. It is possible for C code to determine the endian-ness of the underlying CPU.

a) true b) false

ii. In C, a pointer is a variable that contains an address. If you add 2 to a pointer, then:

a) the resulting value is the address plus 2

b) the resulting value depends on what value the pointer points to

c) the resulting value depends on the type of the pointer

d) a segmentation fault is thrown

iii. When you pass a struct as an argument to a C function, then:

a) the struct is passed by value (i.e., a copy of the struct is made,
including copying each field in the struct))

b) the struct is passed by reference (i.e., a pointer to the struct is passed)

c) a compiler error is thrown, since you cannot pass structs as arguments

d) what happens depends on the type of fields in the struct

iv. When you pass an array as an argument to a C function, then:

a) the array elements are passed by value (i.e., a copy of the array is made, including
copying each element of the array)

b) since arrays are really just pointers, a pointer to the first element of
the array is passed and no array elements are copied

c) a compiler error is thrown, since you cannot pass arrays as arguments

d) what happens depends on the type of the array

12sp

 3

v. The purpose of a header guard is to:

a) prevent more than one .c file from including a particular .h file

b) prevent the header file from being included indirectly, as a side-effect of including
some other .h file that includes it

c) document the contents and purpose of the header file

d) prevent the header file from being included twice, directly or

indirectly

vi. A C++ reference:

a) serves as an alternative name for an object or variable (i.e., is an alias)

b) serves as a pointer to an object or variable

c) cannot be used as a parameter of a function

d) cannot be passed as an argument to a function

vii. What does “const” in the following code imply?

void foo (const int *x) { … }

a) the value of the pointer “x” cannot be changed inside the function foo

b) the function foo cannot have any side-effects

c) nothing; const in this case has no effect

d) the value that the pointer “x” points to cannot be changed inside the

function foo

viii. What does “const” in the following code imply?

void Foo::bar (int *x) const { … }

a) the method bar() cannot mutate any of its parameters

b) the method bar() cannot have any side-effects at all

c) the method bar() cannot mutate any of Foo’s state

d) the method bar() can only invoke const-y functions and methods

 4

ix. Which of the following box and arrow diagrams correctly represents the following code?

int x = 5;
int *y = &x;
int &z = x;
int *w = &z;

a) b)

 c) d)

x. The destructor of an object that is heap-allocated:

a) is invoked when the function in which it is allocated returns

b) is never invoked

c) must be invoked manually

d) is invoked when somebody uses “delete” to deallocate the object

 5

xi. A vtable:

a) exists for each class, and contains a function pointer for each method in the class

b) exists for each class, and contains a function pointer for each virtual

method in the class

c) exists for each object instance, and contains a function pointer for each method in the

object’s class

d) exists for each object instance, and contains a function pointer for each virtual method

in the object’s class

xii. Slicing occurs when:

a) the value of a derived class is assigned to an instance of a base class

b) a pointer to a derived class is cast to, and assigned to, a pointer to a base class

c) an N-element array is assigned to an M-element array, where M<N

d) an element is deleted from a std::vector

 CSE 333 Final Exam August 19, 2016 Sample Solution

 Page 3 of 10

Question 2. (22 points) Templates, STL, function pointers, and smart pointers all at
once! – oh my!!! Don’t panic – the answers to this question are actually quite short.

Sometimes a function is called many times to recomputed values. If that turns out to be
expensive we may be able to save time by storing previously computed values in a cache
and reuse them instead of computing them from scratch each time.

For this problem we want to implement parts of a class named FunctionCache. The
idea is that an instance of FunctionCache stores a pointer to a function f and a map of
<argument, result> pairs, where the result in each pair is computed by applying function f
to the corresponding argument. The class also includes a function apply that is used by
clients to compute values instead of of calling f directly. When apply(x) is called, it
looks in the map to see if x is stored there as a key. If so, it returns the result found in the
map without calling function f. If x does not appear as a key in the map, then apply
calls f to compute f(x), then stores <x, f(x)> in the map for future use, and finally returns
the result to the caller.

Because we want this to work for all single-argument functions, the class is a template
whose parameters are the argument and result types of the function. Here is the main part
of this template, except for the apply function code:

#include <map>
using namespace std;

// Wrapper class for a function with argument type T and
// result type U.
template <typename T, typename U>
class FunctionCache {

public:
 // construct a new FunctionCache. Argument f is a pointer
 // to the function to be used to compute results.
 FunctionCache(U (*f)(T)): cache_(new map<T, U>()), func_(f) { }

 // destructor
 ~FunctionCache() {
 delete cache_;
 }

 // return func_(val), but use cache_ to store and retrieve
 // previously computed values instead of always calling func_
 U apply(T val) { ... }

private:
 map<T, U> *cache_; // cache of <argument, result> pairs
 U (*func_)(T); // the function
};

(Continued on the next page. You may remove this page for reference.)

 CSE 333 Final Exam August 19, 2016 Sample Solution

 Page 4 of 10

Question 2. (cont.) Here is an example of how a client program might use the
FunctionCache template:

// sample function – return x/2.0
double half(int i) { return i/2.0; }

int main(int argc, char **argv) {
 FunctionCache<int, double> hcache(half);
 double x = hcache.apply(3); // computes and saves <3,1.5>
 double y = hcache.apply(4); // computes and saves <4,2.0>
 double z = hcache.apply(3); // returns 1.5 from the cache
 ... // without recomputing
 return 0;
}

(a) (16 points) Provide the full definition of function apply for the FunctionCache
template. Write your solution below. Hint: the solution may be quite short – do not be
alarmed.

 // return func_(val), but use cache_ to retrieve previously
 // computed values, and store new values there

 U apply(T val) {

 if (cache_->count(val) == 1) {

 return (*cache_)[val];

 } else {

 U res = func_(val);

 (*cache_)[val] = res;

 return res;

 }

 }

(continued on next page)

 CSE 333 Final Exam August 19, 2016 Sample Solution

 Page 5 of 10

Question 2. (cont.) (b) (6 points) The original version of the FunctionCache template
uses explicit memory management (delete) in the destructor to deallocate the cache_
map data when an instance of FunctionCache is destroyed.

Another way to handle the heap data would be to use smart pointers instead of an explicit
delete to ensure that the cache_ data is deallocated when a FunctionCache object
is destroyed.

Below, give a precise description of the changes that need to be made to the original
template to make this change. If any code needs to be added or altered, write the new
code here and be sure it is clear where the changes should be made and what, if anything,
in the original code should be deleted or replaced. If any changes are needed in your
implementation of apply in part (a), also describe them here.

There are four changes that are needed:

• Add #include <memory> at the top of the file.

• Change the instance variable declaration of cache_ at the bottom of the template
from map<T, U> *cache_; to unique_ptr<map<T, U>> cache_; .

• In the constructor initializer list, change cache_(new map<T, U>()) to
cache_(unique_ptr<map<T, U>>(new map<T, U>())) . Or, delete
cache_ from the initializer list and initialize it inside the constructor using the
same unique_ptr expression in an assignment statement.

• Remove the line delete cache_; from the destructor.

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 4 of 11

Question 3. (16 points) C++ classes. Consider the following program, which compiles
and links successfully. (What happens after that is something we’ll get to later. J)

#include <iostream>
using namespace std;

class Base {
public:
 Base() {
 cout << "Base constructor" << endl;
 ia_ = new int[5];
 }
 virtual ~Base() {
 cout << "Base destructor" << endl;
 delete[] ia_;
 }
 Base& operator=(const Base& rhs) {
 if (this != &rhs) {
 delete[] ia_;
 ia_ = rhs.ia_;
 cout << "Base assignment" << endl;
 }
 return *this;
 }
private:
 int *ia_;
};

class Derive : public Base {
public:
 Derive() {
 ja_ = new int[5];
 cout << "Derive constructor" << endl;
 }
 virtual ~Derive() {
 cout << "Derive destructor" << endl;
 delete[] ja_;
 }
private:
 int *ja_;
};

int main() {
 Base b1;
 Derive d1;
 b1 = d1;
 return 0;
}

(Question continued on next page – you may remove this page if you wish.)

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 5 of 11

Question 3. (cont.) (a) (8 points) What does this program print when it is executed?

(Reminder/hint: when an object of a derived class is constructed, the base class
constructor for that object executes before the derived class constructor. When the object
is deleted, the destructors run in the reverse order – derived class destructor first.)

Base constructor
Base constructor
Derive constructor
Base assignment
Derive destructor
Base destructor
Base destructor

(b) (8 points) Unfortunately, after the program finishes printing the output you described
in your answer to part (a), it crashes and does not exit normally. The memory
management software detects some sort of problem. What’s wrong and what is the error
in the code? (Be specific and concise. You do not need to fix the problem – just explain
it precisely.)

The memory manager reports a “double delete” error when the destructor for the
second object is executed. The error is in the Base::operator= code. This
assignment operator copies a pointer instead of creating a copy of the array. As a
result, after the assignment b1=d1, both objects point to the single ia_ array
originally allocated to d1, and the destructors for b1 and d1 both attempt to delete
it, causing the double delete error.

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 6 of 11

Question 4. (20 points) The always entertaining virtual function question. The
following program compiles, runs, and produces output with no error messages or other
problems. Answer questions about it on the next page.

#include <iostream>
using namespace std;

class SuperThing {
public:
 virtual void m1() { m2(); cout << "super::m1" << endl; }
 void m2() { cout << "super::m2" << endl; }
 void m3() { cout << "super::m3" << endl; }
};
class Thing: public SuperThing {
public:
 virtual void m2() { m1(); cout << "thing::m2" << endl; }
};
class SubThing: public Thing {
public:
 virtual void m1() { cout << "sub::m1" << endl; }
 void m3() { m2(); cout << "sub::m3" << endl; }
};

int main() {
 SuperThing *super = new Thing();
 Thing *th = (Thing*)super;
 SubThing *sub = new SubThing();
 Thing *thsub = sub;

 ///// HERE /////

 cout << "---" << endl;
 th->m1();
 th->m3();
 cout << "---" << endl;
 sub->m1();
 sub->m3();
 cout << "---" << endl;
 thsub->m1();
 thsub->m3();

 return 0;
}

(Question continued on next page – you may remove this page if you wish.)

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 7 of 11

Question 4. (cont.) (a) (8 points) Complete the following diagram to show the runtime
state of the program when execution reaches the comment ///// HERE ///// in
function main. The diagram should include the variables in main (already supplied),
the objects they point to, pointers from objects to their vtables, and pointers from vtables
to the correct functions. To save time, boxes for the variables in main, the vtables, the
functions, and the first object created by the program, have been provided for you. A
couple of the arrows representing some of the pointers are also included to get you
started. You need to supply all additional objects and pointers needed (if any). Be sure
that the order of pointers in the various vtables is clear.

(b) (12 points) What does this program print when it is executed?

super::m2
super::m1
super::m3

sub::m1
sub::m1
thing::m2
sub::m3

sub::m1
super::m3

super&

th&

sub&

thsub&

SuperThing&vtbl&

Thing&vtbl&

SubThing&vtbl&

SuperThing::m1&

SuperThing::m2&

SuperThing::m3&

Thing::m2&

SubThing::m1&

SubThing::m3&

 CSE 333 Final Exam June 6, 2017 Sample Solution

 Page 9 of 12

Question 6. (12 points) A bit of networking. When we were describing how a network
server works, we listed 7 steps that need to be done to establish communication with a
client, exchange data, and shut down. In the list below, fill in the name of the function
that is used at each step (the reference information at the beginning of the exam may be
useful for this), then give a 1-sentence description of the purpose of that step. Step 6
(read/write) is done for you as an example, and the function name for step 2 is also
provided. You should fill in the rest of the table.

1. Function: getaddrinfo Purpose: Get ip address and port on which to listen

2. Function: socket Purpose: Create a socket

3. Function: bind Purpose: Bind socket created in step 2 to address/port
 from step 1

4. Function: listen Purpose: Identify socket as listening socket to which
 clients can connect

5. Function: accept Purpose: Accept client connection and get new socket fd
 that can be used to communicate with client

6. Function: read/write Purpose: exchange data with the client using the socket

7. Function: close Purpose: Shut down client socket and free resources

CSE 333 18au Final Exam December 12, 2018 Sample Solution

 Page 13 of 16

Question 7. (20 points) Threads. Consider the following simple C++ program, which
prints a sequence of even numbers followed by a sequence of squares. It also contains an
extra #include and a lock variable that might (J) be useful later.

#include <pthread.h>
#include <iostream>

using namespace std;

static pthread_mutex_t lock;

void print(string what, int num) {
 cout << what << " " << num << endl;
}

// print first n even numbers: 2, 4, 6, ..., 2*n
// you may not modify this funciton
void print_evens(int n) {
 for (int i = 1; i <= n; i++) {
 print("evens", 2*i);
 }
}

// print first n squares: 1, 4, 9, 16, ... n*n
// you may not modify this function
void print_squares(int n) {
 for (int i = 1; i <= n; i++) {
 print("squares", i*i);
 }
}

int main(int argc, char** argv) {
 int nsquares = 4;
 int nevens = 5;

 print_evens(nevens);
 print_squares(nsquares);
 return 0;
}

Remove this page from the exam, then continue with the question on the next page. Do
not write anything on this page. It will not be scanned for grading.

CSE 333 18au Final Exam December 12, 2018 Sample Solution

 Page 14 of 16

Question 7. (cont.) For this question we would like to modify this program so it
executes the two functions print_evens and print_squares concurrently in
separate threads. You may not modify the existing print_evens and
print_squares code. You will need to add appropriate thread starter functions that
accept parameters from main and call the existing functions with the appropriate
arguments. You will also need to make whatever modifications are needed in function
print so that each output line appears on a separate line by itself without output from
the other thread interfering. The existing print and main functions are copied below
and on the next page for you to modify (don’t modify the code on the previous page).
Make whatever changes and additions are needed to implement correct, concurrent C++
threaded code using pthreads.

// modify this function so it is thread safe
void print(string what, int num) {

 pthread_mutex_lock(&lock);

 cout << what << " " << num << endl;

 pthread_mutex_unlock(&lock);

}

// add additional thread starter function definitions here

void *thread_worker_evens(void *arg) {

 int n = *(int*)arg;

 print_evens(n);

 return NULL;

}

void *thread_worker_squares(void *arg) {

 int n = *(int*)arg;

 print_squares(n);

 return NULL;

}

(continue with main function on the next page)

CSE 333 18au Final Exam December 12, 2018 Sample Solution

 Page 15 of 16

Question 7. (cont.) Modify the main function below to replace the sequential calls to
print_evens and print_squares with code that executes these two functions
concurrently in independent threads and performs whatever other initialization,
synchronization, and termination is needed for the concurrent program to work correctly.

int main(int argc, char** argv) {
 int nsquares = 4;
 int nevens = 5;

// print_evens(nevens);
// print_squares(nsquares);

 pthread_mutex_init(&lock, NULL);

 pthread_t th1, th2;

 pthread_create(&th1, NULL, &thread_worker_evens,

 (void*)&nevens);

 pthread_create(&th2, NULL, &thread_worker_squares,

 (void*)&nsquares);

 pthread_join(th1, NULL);

 pthread_join(th2, NULL);

 pthread_mutex_destroy(&lock);

 return 0;

}

 CSE 333 19wi Final Exam March 20, 2019 Sample Solution

 Page 7 of 13

Question 4. (20 points, 4 each) Smart pointers. Below we have several small programs,
each of which calls a function foo, and each of which uses smart pointers. Some of
them are buggy, and some of them work correctly. Your job is to determine, for each
program, the following:

(1) Does it compile?
(2) Is its behavior correct (i.e. no memory leaks, run-time errors, or undefined

behavior)? Choose n/a if it did not compile.
(3) If you answered "no" to either of the above, explain concisely what the problem is

and how to fix it.
You should assume that none of the foo functions will attempt to free, delete, or
otherwise modify their argument. You can assume that the actual value returned by
main is not relevant.

(a) int foo(int *n); // defined elsewhere

 int main() {
 std::unique_ptr<int> best_course(new int(333));
 int ans = foo(best_course);
 return ans;
 }
Does it compile? (circle) yes no not sure

Does it execute correctly (circle) yes no n/a (didn’t compile)

What is the problem (if any) and how do we fix it? (leave blank if not applicable)

foo's parameter type is int* but the argument type is unique_ptr<int>. A fix
is to use best_course.get() as the parameter.

(b) int foo(std::shared_ptr<int> p);

 int main() {
 std::unique_ptr<int> best_course(new int(333));
 int ans = foo(std::shared_ptr<int>(best_course.release()));
 return ans;
 }
Does it compile? (circle) yes no not sure

Does it execute correctly (circle) yes no n/a (didn’t compile)

What is the problem (if any) and how do we fix it? (leave blank if not applicable)

(continued next page)

 CSE 333 19wi Final Exam March 20, 2019 Sample Solution

 Page 8 of 13

Question 4. (cont.)
(c) int foo(int, std::shared_ptr<int> p);

 int main() {
 std::shared_ptr<int> best_course(new int[10]);
 int ans = foo(10, best_course);
 return ans;
 }
Does it compile? (circle) yes no not sure

Does it execute correctly (circle) yes no n/a (didn’t compile)

What is the problem (if any) and how do we fix it? (leave blank if not applicable)

The parameter type for the shared_ptrs, <int>, is not correct for an array. The
shared_ptrs will do an ordinary delete on the array, but it must be a
delete[]. The fix is to use shared_ptr<int[]> for the shared_ptr types.

(d) int foo(std::unique_ptr<int> n);

 int main() {
 std::unique_ptr<int> best_course(new int(333));
 int ans = foo(best_course);
 return ans;
 }
Does it compile? (circle) yes no not sure

Does it execute correctly (circle) yes no n/a (didn’t compile)

What is the problem (if any) and how do we fix it? (leave blank if not applicable)

Function foo has a call-by-value parameter, and unique_ptrs cannot be copied.
The solution is to use shared_ptrs or to use a reference parameter (&) for foo.

(e) int foo(const int *p);

 int main() {
 std::unique_ptr<int> best_course(new int(333));
 int ans = foo(best_course.release());
 return ans;
 }
Does it compile? (circle) yes no not sure

Does it execute correctly (circle) yes no n/a (didn’t compile)

What is the problem (if any) and how do we fix it? (leave blank if not applicable)

There is a memory leak. best_course.release() returns the raw pointer and
the smart pointer is then no longer responsible for deleting the data. Either we need
to explicitly delete the data, or use get() instead of release() to make a copy of
the pointer while still letting the shared pointer delete the heap data later.

