
CSE 333
Section 10
Threads, Pr-, and Concurrency-ocesses

1

Logistics:

Due tonight :
HW4 (at most one late day)

Final Exam Review :
TBD this weekend

Course Evaluations:
Due Sunday (12/8) Please do them <3

Final Exam:
Wednesday (12/11)

2

Terminology

● Thread
Some sequential execution of a program

● Process
The execution environment (may contain one or more threads)

● Parallelism
Doing multiple tasks at the same time (e.g. on multiple CPUs)

● Concurrency
Making progress on multiple tasks without having to wait for old tasks to finish

3

“Computers are really dumb. They can only
do a few things like shuffling around

numbers, but they do them really really fast
so that they appear smart.”

-Hal Perkins
Threads are just a way of making computers appear to do multitasking,
regardless of whether they are running one or more CPUs

4

Threads vs Processes

Threads Processes
Memory / Address space Shared Separate

 - Stack Each thread has its own -----

 - Heap Shared by multiple threads -----

Resources (e.g. file descriptors) Shared Unique copies

Communication Easy Difficult

Synchronization Difficult N/A

Robustness One crashes, all crash Independent of each other

5

Threads

● Everything except the stack is shared
● Typically done with POSIX pthreads (C++11 also added thread objects)

○ pthread_create - “Go do this {function}”
○ pthread_exit - “I’m done with my task!”
○ pthread_join - “I’ll wait for you to report back your result”
○ pthread_cancel - “I changed my mind, you can stop now”
○ pthread_detach - “You’re free now, go forth and prosper”

● Faster context switch
● Easy communication (put something in shared memory)
● Synchronization often uses locks (like mutexes)

6

Threads - Quick Check

 MyClass onTheStack;
 pthread_t child;
 pthread_create(&child, nullptr, foo, &onTheStack);

onTheStack is on the parent thread’s stack. However, each thread
has its own stack! Can we still access onTheStack from the child?
Why or why not?

Yes! All threads share an address space

7

Threads - Gotchas

● Resources (heap-allocated storage, file descriptors, etc)
○ Often shared between multiple threads
○ Must be allocated / deallocated exactly once
○ Don’t use deallocated resources from other threads

buf = new int[BUFSIZE];
...
if (!handleRequest(buf, req, len)) {

delete[] buf;
close(fd);
pthread_exit(NULL);

}
8

 // buf was allocated in this thread
 // is somebody else going to try to use fd???

Threads - Gotchas

● Load / store are separate operations

global_ctr += 1; // possible bug here!

global_ctr = global_ctr + 1; // equivalent

// What happens if we switch to another thread
// before storing the new value?

9

Threads - Gotchas

● Locking is hard.
○ Too much, and performance is worse than sequential
○ Too little, and threads clash - often unexpected results
○ Not careful, and deadlock freezes your program forever!

pthread_mutex_lock(&lock);
if (!do_computation(shared_resource)) {

printf(“Error doing computation\n”);
return false;

}
pthread_mutex_unlock(&lock);
return true; 10

// !!!

How to reason about concurrency?

● There’s no one way to reason about everything that could happen
● Try to break each problem down as much as possible

○ e.g. reads, writes, things that happen only while a lock is held

Suppose you have some global variable

int g = 0;

Two threads each run the following code:

g += 1;
g += 2;

11

g +=1;

g += 2;

g = g + 1;

g = g + 2;

load reg ⇐ g
store g ⇐ reg + 1

How to reason about concurrency?

Each thread has its own set of registers, so reg can hold
different values in different threads

load reg ⇐ g
store g ⇐ reg + 2

12

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

How to reason about concurrency?

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

Thread 1 Thread 2

13

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

How to reason about concurrency?

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

Thread 1 Thread 2

g = 6g = 3
14

Exercise 1:
Reasoning about threads is hard

15

16

17

18

Processes

● Each has its own separate address space
● File descriptors are inherited from parent (sockets, stdin, etc)
● Created using fork() - the only function that returns twice!

○ Child gets 0
○ Parent gets new pid (process id) of child

● Get status of children with waitpid(...)

19

What the fork?

// fork 10 children and count off (random order)
int main(int argc, char **argv) {

for (int i = 0; i < 10; ++i) {
if (fork() == 0) {

printf("%d\n", i);
}

}
}

Can you spot the bug?
20

Exercise 3:
Synchronization with threads is hard

21

22

//No pthread_join()!!!!!!!

// No pthread_exit()!!!!!

23

The data structure is in shared memory, easier for
threads to share.

24

The Lock is on the entire array when
we only need one index!

Exercise 4:
Threads vs Processes

25

Reminder: Threads vs Processes

Threads Processes
Memory / Address space Shared Separate

 - Stack Each thread has its own -----

 - Heap Shared by multiple threads -----

Resources (e.g. file descriptors) Shared Unique copies

Communication Easy Difficult

Synchronization Difficult N/A

Robustness One crashes, all crash Independent of each other

26

Not on the Exam (but cool anyways)

● You’ve probably run afoul of SIGSEGV (a.k.a. “Seg fault”)
○ What is it?

● UNIX processes can communicate with each other!
● signals are notifications sent between processes

○ They all have default handlers, such as “crash the program”
● You can use signal() or sigaction() to handle them yourself!

27

Demo: I am unstoppable

28

Off-Topic: Teaching

29

TA-ing

You are all well enough equipped to TA CSE333, CSE351, CSE374 and others.

You do NOT have to 4.0 a class to TA it (Travis didn’t 4.0 this class)

You do NOT have to be a super social person

TAing will reinforce your understanding of any material

If you think you would be interested, I would highly recommend reaching
out and giving it a try.

30

Ask Us Anything!!!

31

