
CSE 333 Section AB

C++ classes & dynamic memory! (w/ Yifan & Travis)

1

Logistics

Due TONIGHT:
Homework 2 @ 9 pm

Due Monday:
Exercise 12 @ 11 am

Due Wednesday 10/24:
Exercise 12a @ 11 am

2

!!!! Midterm next week
Friday November 1st!!!!

C++ continued

C++ Classes
Memory Dynamism

3

Questions and review
● What do the following modifiers mean?

− public:
− protected:
− private:
− friend:

● What is a struct under this new context?

Member is accessible by anyone
Member is accessible by this class and any derived classes

Member is only accessible by this class
Allows access of private/protected members to other functions and/or classes

− A struct can be thought of as a class where all members are default public instead of
default private. In C++, it is also possible to give member functions (such as a
constructor) to structs

4

When we assign a struct variable to another, what happens when the
structure contains an array?

struct vector{

 double coords[3];

 int id;

}

qt
coords= [3, 1, 4]
id = 1

− Compiler automatically performs Deep Copy
for array members

− Same behaviour for arrays in classes

Origin
coords= [0.0, 0.0, 0.0]
id = 2

Origin = qt

Origin
coords= [3, 1, 4]
id = 1

qt
coords= [3, 1, 4]
id = 1

5

Constructors Revisited

● Constructor (ctor): Can define any number as long as they have different parameters. Constructs
a new instance of the class.

class Int {
 public:
 Int() { ival = 17; cout << "default(" << ival << ")" << endl; }
 Int(int n) { ival = n; cout << "ctor(" << ival << ")" << endl; }
 Int(const Int &n) {

 ival = n.ival;
 cout << "cctor(" << ival << ")" << endl;

 }
 ~Int() { cout << "dtor(" << ival << ")" << endl; }
 …
};

Constructor (ctor)
Constructor (ctor)

● Copy Constructor (cctor): Creates a new instance based on another instance (must take a
reference!). Invoked when passing/returning a non-reference object to/from a function.

Copy Constructor (cctor)

● Destructor (dtor): Cleans up the class instance. Deletes dynamically allocated memory (if
any).

Destructor (dtor)

6

Constructors Revisited

● Constructor (ctor): Can define any number as long as they have different parameters. Constructs
a new instance of the class.

class Int {
 public:
 Int() { ival = 17; cout << "default(" << ival << ")" << endl; }
 Int(int n) { ival = n; cout << "ctor(" << ival << ")" << endl; }
 Int(const Int &n) {

 ival = n.ival;
 cout << "cctor(" << ival << ")" << endl;

 }
 ~Int() { cout << "dtor(" << ival << ")" << endl; }
 …
};

Constructor (ctor)
Constructor (ctor)

● Copy Constructor (cctor): Creates a new instance based on another instance (must take a
reference!). Invoked when passing/returning a non-reference object to/from a function.

Copy Constructor (cctor)

● Destructor (dtor): Cleans up the class instance. Deletes dynamically allocated memory (if
any).

Destructor (dtor)

7

8

class Int {
 public:
 Int() { ival_ = 17; cout << "default(" << ival_ << ")" << endl; }
 Int(int n) { ival_ = n; cout << "ctor(" << ival_ << ")" << endl; }
 Int(const Int &n) {
 ival_ = n.ival_;
 cout << "cctor(" << ival_ << ")" << endl;
 }
 ~Int() { cout << "dtor(" << ival_ << ")" << endl; }
 int get() const {
 cout << "get(" << ival_ << ")" << endl;
 return ival_;
 }
 void set(int n) {
 ival_ = n;
 cout << "set(" << ival_ << ")" << endl;
 }
 private:
 int ival_;
};

int main(int argc, char **argv) {
 Int p;
 Int q(p);
 Int r(5);
 q.set(p.get()+1);
 return EXIT_SUCCESS;
}

9

int main(int argc, char **argv) {
 Int p;
 Int q(p);
 Int r(5);
 q.set(p.get()+1);
 return EXIT_SUCCESS;
}
class Int {
 public:
 Int() { ival_ = 17; cout << "default(" << ival_ << ")" << endl; }
 Int(int n) { ival_ = n; cout << "ctor(" << ival_ << ")" << endl; }
 Int(const Int &n) {
 ival_ = n.ival_;
 cout << "cctor(" << ival_ << ")" << endl;
 }
 ~Int() { cout << "dtor(" << ival_ << ")" << endl; }
 int get() const {
 cout << "get(" << ival_ << ")" << endl;
 return ival_;
 }
 void set(int n) {
 ival_ = n;
 cout << "set(" << ival_ << ")" << endl;
 }
 private:
 int ival_;
};

UwU Looks like we got all the function calls!

Questions and review

● What is the destruction order?

int main(int argc, char **argv) {
 Int p;
 Int q(p);
 Int r(5);
 q.set(p.get()+1);
 return EXIT_SUCCESS;
}

10

Destruction order is the reverse of construction

order.

11

Questions and review
● What happens if you don’t define a copy constructor? Or an assignment operator? Or

a destructor? Why might this be bad?

● (Hint: What if a member of a class is a pointer to heap-allocated struct?)

● How can you disable the copy constructor/assignment operator/destructor?
12

In C++, if you don’t define any of these, a default one will be synthesized

for you.

The default copy constructor does a shallow copy of all fields.

The default assignment operator does a shallow copy of all fields.

The default destructor calls the default destructors of any fields that have

them.

Set their prototypes equal to the keyword “delete”: ~SomeClass() = delete;

Call Stack:

baz(1, 2, 3)

13

Call Stack:

baz(1, 2, 3)

foo(2, 3)

h
14

Call Stack:

baz(1, 2, 3)

bar(1)

h a

foo(1)

15

Call Stack:

baz(1, 2, 3)

bar(1)

h a

foo()

p
16

Call Stack:

baz(1, 2, 3)

bar(1)

h a p p
17

Call Stack:

baz(1, 2, 3)

h a p p i
18

Call Stack:

~baz()

h a p p i n
19

Call Stack:

~bar()

h a p p i n e
20

Call Stack:

~foo()

h a p p i n e s
21

Call Stack:

~foo()

h a p p i n e s s
22

Call Stack:

~foo()

h a p p i n e s s s
23

24

How many bytes of memory
are leaked by this program?

25

How many bytes of memory
are leaked by this program?

12 bytes

26

How can we fix these
memory leaks?

27

How can we fix these
memory leaks?

28

29

When ~BadCopy() is invoked for
bc2, we will try to delete already
deleted memory

Question 5

30

array_

Question 5

31

a array_

stack heap

int[MAXSIZE]

0x……..b array_

int[MAXSIZE]

array_vl int[MAXSIZE]

vm int[MAXSIZE]

p_ 0x……..w

array_

Question 5

32

a array_

stack heap

int[MAXSIZE]

0x……..b array_

int[MAXSIZE]

array_vl int[MAXSIZE]

vm int[MAXSIZE]

p_ 0x……..w

array_

Question 5

33

a array_

stack heap

int[MAXSIZE]

0x……..b

int[MAXSIZE]

array_vl int[MAXSIZE]

vm int[MAXSIZE]

p_ 0x……..w

Still on the heap!

