
CSE 333 – Section 4: C++ Intro; Makefiles 
Welcome back to section! We’re glad that you’re here :) 
 
References 
References create ​aliases​ that we can bind to existing variables.  References are not separate 
variables and cannot be reassigned after they are initialized.  In C++, you define a reference using: 
type &name = var​.  The ‘​& ​’ is similar to the ‘​* ​’ in a pointer definition in that it modifies the type and 
the space can come before or after it. 

Const 
Const makes a variable ​unchangeable​ after initialization, and is enforced at compile time. 
 

const int x = 5;               // Can’t assign to x 

const int* xptr = &x;          // Can assign to xptr, but not *xptr 

int *const yptr = &y;          // Can assign to *yptr, but not yptr 

const int *const zptr = &z;    // Can’t assign to *zptr or zptr 

 
Class objects can be declared const too - a const class object can only call member functions that 
have been declared as const, which are not allowed to modify the object instance it is being called on. 
 
Exercises​: 
1) Consider the following functions and variable declarations. 

a) Draw a memory diagram for the variables declared in ​main​. It might be helpful to 
distinguish variables that are constant in your memory diagram. 

void foo(const int &arg); 

void bar(int &arg); 

int main(int argc, char **argv) { 

  int x = 5;  

  int &refx = x; 

  int *ptrx = &x; 

  const int &ro_refx = x; 

  const int *ro_ptr1 = &x; 

  int *const ro_ptr2 = &x; 

  // ... 

} 

 
b) When would you prefer ​void func(int &arg)​;​ to ​void func(int *arg);​? 

Expand on this distinction for other types besides ​int​. 
 
 
 
 
 

1 



 
c) What does the compiler think about the following lines of code: 

bar(refx); 

bar(ro_refx); 

foo(refx); 

 
d) How about this code? 

ro_ptr1 = (int*)0xDEADBEEF; 

ptrx = &ro_refx; 

ro_ptr2 = ro_ptr2 + 2; 

*ro_ptr1 = *ro_ptr1 + 1; 

 
e) In a function ​const int f(const int a);​ are the ​const​ declarations useful to 

the client? How about the programmer? What about this function needs to change to 
make ​const​ matter? 

 
 
 
 
 
2) What does the following program print out?  ​ ​Hint​: box-and-arrow diagram! 

int ​main​(int argc, char** argv) { 
  int x = 1;      ​// assume &x = 0x7ff...94 
  int& rx = x; 

  int* px = &x; 

  int*& rpx = px; 

 

    rx = 2; 

  *rpx = 3; 

   px += 4; 

  cout << "  x: " <<   x << endl; 

  cout << " rx: " <<  rx << endl; 

  cout << "*px: " << *px << endl; 

  cout << " &x: " <<  &x << endl; 

  cout << "rpx: " << rpx << endl; 

  cout << "*rpx: " << *rpx << endl; 

 

  return 0; 

}  

2 



3) Refer to the following ​poorly-written​ class declaration.  
 

class MultChoice { 

 public: 

  ​MultChoice​(int q, char resp) : q_(q), resp_(resp) { }  ​// 2-arg ctor 
  int ​get_q​() const { return q_; } 
  char ​get_resp​() { return resp_; } 
  bool ​Compare​(MultChoice &mc) const;  ​// do these MultChoice's match? 
 

 private: 

  int  q_;     ​// question number 
  char resp_;  ​// response: 'A','B','C','D', or 'E' 
};  ​// class MultChoice 
 

a) Indicate (​Y​/​N​) which ​lines​ of the snippets of code below (if any) would cause compiler errors: 
 

Code Snippets Error?  Code Snippets Error? 

int z = 5; 

const int *x = &z; 

int *y = &z; 

x = y; 

*x = *y; 

  int z = 5; 

int *const w = &z; 

const int *const v = &z; 

*v = *w; 

*w = *v; 

 

const MultChoice m1(1,'A'); 

MultChoice m2(2,'B'); 

cout << m1. ​get_resp​(); 
cout << m2. ​get_q​(); 

  const MultChoice m1(1,'A'); 

MultChoice m2(2,'B'); 

m1. ​Compare​(m2); 
m2. ​Compare​(m1); 

 

 
b) What would you change about the class declaration to make it better?  Feel free to mark 

directly on the class declaration above. 
 

 

  

3 



4) Mystery Functions  
Consider the following C++ code, which has ​__???__​ in the place of 3 function names in ​main ​:  

 
struct Thing { 

  int a; 

  bool b; 

}; 

 

void ​PrintThing​(const Thing& t) { 
  cout << boolalpha << "Thing:  " << t.a << ", " << t.b << endl;  

} 

 

int ​main​() {  
  Thing foo = {5, true}; 

  cout << "(0) "; 

  PrintThing(foo); 

  

  cout << "(1) ";  

  ​__???__​(foo);   ​// mystery 1 
  PrintThing(foo);  

  

  cout << "(2) ";  

  ​__???__​(&foo);  ​// mystery 2 
  PrintThing(foo);  

  

  cout << "(3) ";  

  ​__???__​(foo);   ​// mystery 3 
  PrintThing(foo);  

  

  return 0;  

} 

 

Program Output: 
(0) Thing:  5, true 

(1) Thing:  6, false 

(2) Thing:  3, true 

(3) Thing:  3, true 

Possible Functions: 
void ​f1​(Thing t);  
void ​f2​(Thing &t);  
void ​f3​(Thing *t);  
void ​f4​(const Thing &t);  
void ​f5​(const Thing t);  

 
List ​all​ of the possible functions (​f1​ - ​f5​) that could have been called at each of the three mystery 
points in the program that would compile cleanly (no errors) and could have produced the results 
shown.  There is at least one possibility at each point; there might be more. 

● Hint​: look at parameter lists and types in the function declarations and in the calls. 
  

4 



Makefiles 
Makefiles are used to manage project recompilation. Project structure and dependencies can be 
represented as a directed acyclic graph (DAG), which a makefile encodes to recursively build the 
minimum number of files for a specified target. ​The direction of the arrows in a DAG are not 
important (point to dependency vs. point to target) as long as you are consistent. ​ Makefile 
entries are triplets of the form: 
 

target:  src1 src2 … srcN 

command/commands 

 
Exercise​: 
5) Given the snippets of the following files, draw out the DAG and write a suitable Makefile.  

It should produce the executables UsePoint, UseThing, and Alone and have ‘all’ and ‘clean’ phony 
targets.  

 

Point.h class Point { … }; Point.cc #include "Point.h" 

// defs of methods 

UsePoint.cc #include "Point.h" 

#include "Thing.h" 

int main( … ) { … } 

Thing.h struct Thing { … }; 

// full struct def here 

UseThing.cc #include "Thing.h" 

int main( … ) { … } 

Alone.cc int main( … ) { … } 

 
 
 

 

5 


