
CSE 333 Section AB

Const, References & Make! (w/ Yifan & Travis)

1

Logistics

Due Friday:
Exercise 8 @ 11 am

Due Monday:
Exercise 9 @ 11 am

Due Thursday 10/24:
Homework 2 @ 9 pm

2

References & Const review

3

Example
● Consider the following code:

int x = 5;

int &refx = x;

int *ptrx = &x;

5

Similar in syntax to the *
in pointer declarations

x, refx 5

0x7fff...ptrx

Legend

Red Thing = “can’t change
the box it’s next to”
Black = “writeable/readable”

4

Example
● Consider the following code:

int x = 5;

int &refx = x;

int *ptrx = &x;

const int &ro_refx = x;

const int *ro_ptr1 = &x;

int *const ro_ptr2 = &x;

5x, refx,

0x7fff... ptrxro_ptr1 0x7fff...

0x7fff... ro_ptr2

“Const pointer to an int”

“Pointer to a const int”

ro_refx

Tip: Read the declaration “right-to-left”

Legend

Red Thing = “can’t change
the box it’s next to”
Black = “writeable/readable”

5

Example
● Consider the following code:

int x = 5;

int &refx = x;

int *ptrx = &x;

const int &ro_refx = x;

const int *ro_ptr1 = &x;

int *const ro_ptr2 = &x;

5x, refx,

0x7fff... ptrxro_ptr1 0x7fff...

0x7fff... ro_ptr2

ro_refx

When would you prefer this...

void func(int &arg);
...to this?

void func(int *arg);

Legend

Red Thing = “can’t change
the box it’s next to”
Black = “writeable/readable”

Vice-Versa?

6

Example
● Consider the following code:

int x = 5;

int &refx = x;

int *ptrx = &x;

const int &ro_refx = x;

const int *ro_ptr1 = &x;

int *const ro_ptr2 = &x;

5x, refx,

0x7fff... ptrxro_ptr1 0x7fff...

0x7fff... ro_ptr2

ro_refx

Which results in a compiler error?
bar(refx);

bar(ro_refx);

foo(refx);

Legend

Red Thing = “can’t change
the box it’s next to”
Black = “writeable/readable”

7

Example
● Consider the following code:

int x = 5;

int &refx = x;

int *ptrx = &x;

const int &ro_refx = x;

const int *ro_ptr1 = &x;

int *const ro_ptr2 = &x;

5x, refx,

0x7fff... ptrxro_ptr1 0x7fff...

0x7fff... ro_ptr2

ro_refx

Which results in a compiler error?

ro_ptr1 = (int*)0xDEADBEEF;

ptrx = &ro_refx;

ro_ptr2 = ro_ptr2 + 2;

*ro_ptr1 = *ro_ptr1 + 1;

Legend

Red Thing = “can’t change
the box it’s next to”
Black = “writeable/readable”

8

What about “const” object methods?

9

Cannot mutate the
object it’s called on!

10

Summary
● Pointers vs. References:

Pointers References

Can move to different data via
reassignment/pointer arithmetic

References the same data for its entire
lifetime

Can be initialized to NULL No sensible “default reference”

“datatype *const ptr” is good style for output
parameters within functions (Unchangeable
pointers pointing to changeable data)

“const datatype &ref” is good style for
passing in input values to a function
(Read-only values without copying
memory)

● Const:
○ Tip: Read the declaration “right-to-left”.
○ Prevent yourself (and clients) from changing data that doesn’t make sense to change!

11

Worksheet Time

12

13

14

15

16

Makefiles, how do they work?
MakeFile Format:

Can type “make <target>” it will attempt to build the target.

// attempts to build by running the supplied commands

● If the target file doesn’t exist, it is rebuilt.

● If a sources are “older” than the target, it will not be rebuilt.

● If a source doesn’t exist or has been updated, target is rebuilt.

● Make will recursively check that sources are up to date.

17

Makefiles, Phony targets
MakeFile Format:

Phony Target: If we list a target, but the command provided doesn’t

make a file with the target’s name

all: <List all executables>
// no need to provide a command

clean:
rm <all files we want to delete>

18

Makefiles
MakeFile Format:

The most important part is drawing the dependencies

● .cc files and .h are sources, should not be targets

● .o files are compiled from .cc files, depend on the source .cc and

included .h files

● Executables need intermediate .o files if using multiple source .cc files

Otherwise, can be compiled directly from sources.
19

20

21

