
CSE 333 Section AC

Logistics

Due TODAY:
Homework 1 @ 9 pm

Due Monday:
Exercise 6 @ 11 am

POSIX
Posix is a family of standards specified by the IEEE. These standards maintains compatibility across
variants of Unix-like operating systems by defining APIs and standards for basic I/O (file, terminal, and
network) and for threading.

1) What does POSIX stand for?

2) Why might a POSIX standard be beneficial? From an application perspective? Versus using the C stdio
library?

Portable Operating System Interface
`

● More explicit control since read and write functions are system calls
and you can directly access system resources.

● POSIX calls are unbuffered so you can implement your own buffer
strategy on top of read()/write().

● There is no standard higher level API for network and other I/O
devices

Review from Lecture

ssize_t read(int fd, void *buf, size_t count)

An error occurred result = -1
errno = error

Already at EOF result = 0

Partial Read result < count

Success! result == count

New Scenario - Messy Roommate

● The Linux kernel is now your roommate

● There are N pieces of trash in the room

● There is a single trash can, char bin[N]
○ (For some reason, the trash goes in a particular order)

● You can tell your roommate to pick it up, but he/she is unreliable

New Scenario - Messy Roommate

NumTrash pickup(roomNum, trashCan, Amount)

“I tried to start cleaning, but something came up”
(got hungry, had a midterm, room was locked, etc.)

NumTrash == -1
errno == excuse

“You told me to pick up trash, but the room was
already clean”

NumTrash == 0

“I picked up some of it, but then I got distracted by
my favorite show on Netflix”

NumTrash < Amount

“I did it! I picked up all the trash!” NumTrash == Amount

How do we get the room
clean?

● Use a loop. What’s the (high level) goal?
○ Pick up all N pieces of trash

● What if the roommate returns -1 with an excuse?
○ If it’s a valid excuse, stop telling them to pick up trash
○ If it’s not, start over at the top of the loop

● What if the room is already clean?
○ Stop telling the roommate to pick up trash

● What if the roommate only picked up some of it?
○ Record how much they picked up, and tell them to pick up the rest

● What if the roommate picked up everything you asked?
○ Our goal has been reached!

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

That’s it!

How do we get the room
clean?

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]
What do we
do in the
following
scenarios?

How do we get the room
clean?

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]I have to study
for cse333! I’ll
do it later.

Decide if the
excuse is
reasonable,
and either
let it be or
ask again.

How do we get the room
clean?

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]The room is
already clean,
dawg!

Stop asking
them to clean
the room!
There’s
nothing to do.

How do we get the room
clean?

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]
Ask them
again to pick
up the rest
of it.

I picked up 3
whole pieces of
trash! What more
do you want from
me?

How do we get the room
clean?

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]
They did
what you
asked, so
stop asking
them to pick
up trash.

I did it! The
whole room
is finally
clean.

How do we get the room
clean?

int pickedUp = 0;
while (____________) {

}

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

How do we get the room
clean?

int pickedUp = 0;
while (pickedUp < N) {

 if (NumTrash == -1) {
 if (bad excuse)
 ask again
 stop asking
 }
 if (NumTrash == 0)
 stop asking

}

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

if (NumTrash == -1) {
 if (bad excuse)
 ask again

}
if (NumTrash == 0) // we over-estimated the trash

stop asking since the room is clean
add NumTrash to pickedUp

if (excuse not reasonable)
 ask again
stop asking and handle the excuse

NumTrash = pickup(room, bin + pickedUp, N - pickedUp)

How do we get the room
clean?

int pickedUp = 0;
while (pickedUp < N) {

 if (NumTrash == -1) {
 if (bad excuse)
 ask again
 stop asking
 }
 if (NumTrash == 0)
 stop asking

}

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

if (result == -1) {
 if (bad excuse)
 ask again

}
if (result == 0)

break;
pickedUp += result;

if (errno == E_BUSY_NETFLIX)
 continue;
break;

result = pickup(room, bin + pickedUp, N - pickedUp)

Some Final Notes...
We assumed that there were exactly N pieces of trash (N bytes of data that we
wanted to read from a file). How can we modify our solution if we don’t know N?

 (Answer): Keep trying to read(...) until we get 0 back (EOF / clean room)

We determine N dynamically by tracking the number of bytes read until this point,
and use malloc to allocate more space as we read.

There is no one true loop.
Tailor your POSIX loops to the specifics of what you need!

Back to the worksheet (Q3)

More Posix!

More Posix!

More Posix!

