POSIX I/O

The fun stuff!

POSIX

Posix is a family of standards specified by the IEEE. These standards maintains compatibility across variants of Unix-like operating systems by defining APIs and standards for basic I/O (file, terminal, and network) and for threading.

1) What does POSIX stand for?

Portable Operating System Interface

- 1) Why might a POSIX standard be beneficial? From an application perspective? Versus using the C stdio library?
 - More explicit control since read and write functions are system calls and you can directly access system resources.
 - POSIX calls are unbuffered so you can implement your own buffer strategy on top of read()/write().
 - There is no standard higher level API for network and other I/O devices

Review from Lecture

ssize_t read(int fd, void *buf, size_t count)

An error occurred	result = -1 errno = error
Already at EOF	result = 0
Partial Read	result < count
Success!	result == count

New Scenario - Messy Roommate

- The Linux kernel is now your roommate
- There are N pieces of trash in the room
- There is a single trash can, char bin[N]
 (For some reason, the trash goes in a particular order)
- You can tell your roommate to pick it up, but he/she is unreliable

New Scenario - Messy Roommate

NumTrash pickup(roomNum, trashCan, Amount)

" <i>I tried to start cleaning, but something came up</i> " (got hungry, had a midterm, room was locked, etc.)	NumTrash == -1 errno == excuse
"You told me to pick up trash, but the room was already clean"	NumTrash == 0
"I picked up some of it, but then I got distracted by my favorite show on Netflix"	NumTrash < Amount
"I did it! I picked up all the trash!"	NumTrash == Amount

NumTrash pickup(roomNum, trashCan, Amount)

How do we get the room clean?

- Use a loop. What's the (high level) goal?
 - Pick up all N pieces of trash
- What if the roommate returns -1 with an excuse?
 - If it's a valid excuse, stop telling them to pick up trash
 - If it's not, start over at the top of the loop
- What if the room is already clean?
 - Stop telling the roommate to pick up trash
- What if the roommate only picked up some of it?
 - Record how much they picked up, and tell them to pick up the rest
- What if the roommate picked up everything you asked?
 - Our goal has been reached!

NumTrash == -1, errno == excuse
NumTrash == 0
NumTrash < Amount
NumTrash == Amount</pre>

That's it!

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash pickup(roomNum, trashCan, Amount) How do we get the room NumTrash == -1. errno == excuse clean? NumTrash == 0NumTrash < AmountNumTrash == Amount Ask them I picked up 3 bin[N-1] whole pieces of again to pick trash! What more up the rest do you want from me? of it. bin[0]

How do we get the room clean?

NumTrash pickup(roomNum, trashCan, Amount)

NumTrash == -1, errno == excuse
NumTrash == 0
NumTrash < Amount
NumTrash == Amount

They did what you asked, so stop asking them to pick up trash.

Worksheet Exercise 3

- Write the string buf to the file 333.txt.
- Do not use the bytes_left method from lecture.

Worksheet Exercise 7

• Write a C program that is analogous to ls.