

CSE 333 Section 1 Solutions - C, Pointers, and Gitlab

Pointers

Exercises:
Draw a memory diagram like the one above for the following code and determine what the
output will be.

void foo(int32_t *x, int32_t *y, int32_t *z) {

 x = y;

 *x = *z;

 *z = 37;

}

int main(int argc, char *argv[]) {

 int32_t x = 5, y = 22, z = 42;

 foo(&x, &y, &z);

 printf("%d, %d, %d\n", x, y, z);

 return EXIT_SUCCESS;

}

foo line 1: foo line 2: foo line 3: end of foo:

So, the code will output 5, 42, 37.

1

The following code has a bug. What’s the problem, and how would you fix it?

void bar(char *str) {

 str = "ok bye!";

}

int main(int argc, char *argv[]) {

 char *str = "hello world!";

 bar(str);

 printf("%s\n", str); // should print "ok bye!"

 return EXIT_SUCCESS;

}

The problem is that modifying the argument str in bar will not effect str in main because
arguments in C are always passed by value. In order to modify str in main , we need to pass a
pointer to a pointer (char **) into bar and then dereference it:

void bar_fixed(char **str_ptr) {

 *str_ptr = "ok bye!";

}

2

Output Parameters

Exercise:
strcpy is a function from the standard library that copies a string src into an output parameter
called dest and returns a pointer to dest . Write the function below. You may assume that
dest has sufficient space to store src .

char *strcpy(char *dest, char *src) {

 char *ret_value = dest;

 while (*src != '\0') {

 *dest = *src;

 src++;

 dest++;

 }

 *dest = '\0'; // don’t forget the null terminator!

 return ret_value;

}

Why do we need an output parameter? Why can’t we just return an array?

If we allocate an array inside strcpy , it will be allocated on the stack. Thus, we have no control
over this memory after strcpy returns, which means we can’t safely use the array whose
address we’ve returned.

We could’ve also returned a pointer to a malloc ’d block of memory. How might this be better or
worse than using an output parameter?

Pros of Malloc

● We don’t have to worry about an output parameter not having enough storage space for
the copy.

● For very large strings, it’s more efficient to allocate memory on the heap for a copy rather
than allocating an array on the stack to hold it.

Pros of Output Params

● We don’t have to handle the case where malloc fails.
● More flexibility for the user - they can choose to use a stack-allocated array for storage

or they can use a malloc’d chunk of memory.

3

Pointer Arithmetic and Arrays

Exercise:
Given the following command: “mkdir -v cats dogs ” and argv = 0x1000 , draw a
box-and-arrow memory diagram of argv and its contents for when mkdir executes.

argv is the second parameter, so its value is stored in %rsi and does not take up space in
memory. The character arrays have unknown/unspecified addresses that are stored in the
entries of argv . Each character of the command-line arguments takes up 1 byte of memory
and the elements of each character array have consecutive addresses, though the arrays are
likely not contiguous to each other.

Using the same information from above, what can you say about the values returned by the
following expressions? You may not be able to tell the exact value returned, but you should be
able to describe what that value is/represents.

1) argv[0] -> address of the first character in "mkdir"

2) argv + 1 -> 0x1008

3) *(argv[1] + 1) -> ' v'

4) argv[0] + 1 -> address of the second character in "mkdir"

5) argv[0][3] -> ' i'

4

Exercise:
A prefix sum over an array is the running total of all numbers in the array up to and including the
current number. For example, given the array {1, 2, 3, 4}, the prefix sum would be {1, 3, 6, 10}.

Write a function to compute the prefix sum of an array given a pointer to its first element, the
pointer to the first element of the output array, and the length both arrays (assumed to be the
same).

void prefix_sum(int *input, int *output, int length) {

if (length == 0) {

return;

}

output[0] = input[0];

for (int i = 1; i < length; i++) {

output[i] = output[i - 1] + input[i];

}

}

5

