
CSE 333 Section 1 - C, Pointers, and Gitlab 
Welcome to section!!!​ 😃 
 

Pointers 
Pointers are a data type that store a memory address.  We use them for a number of things in 
C, such as: 

● Simulating “pass-by-reference” 
● Using function arguments as return values (also known as “​output parameters​”) 
● Avoiding copying whole data structures when passing arguments into functions 

 
If we have a variable ​x ​, then ​&x ​ will give us the address of ​x ​.  If we have a pointer ​p ​, ​*p ​ will 
give us the value stored at the address ​p ​ is holding, or “the value ​p ​ points to.” 
 
Let’s look at an example! 
  int32_t x; 

  int32_t *ptr; 

  ptr = &x; 

  x = 5; 

  *ptr = 10;  

 
1) We can represent the result of the above three lines of code  
    graphically. ​ptr ​ stores the address of ​x ​. It “points to ​x ​.”  ​x ​ currently  
    doesn’t have a value because we did not assign it one! 
 
2) After executing ​x = 5 ​, our diagram changes. 
 
3) After executing, ​*ptr = 10 ​, our diagram changes again. Notice that 
    ​x ​ has been modified by dereferencing ​ptr ​. 
 
Exercises: 

Draw a memory diagram like the one above for the following code and determine what the 
output will be. 
 
void foo(int32_t *x, int32_t *y, int32_t *z) { 

  x = y; 

  *x = *z; 

  *z = 37; 

} 

 
int main(int argc, char *argv[]) { 

  int32_t x = 5, y = 22, z = 42; 

  foo(&x, &y, &z); 

  printf("%d, %d, %d\n", x, y, z); 

  return EXIT_SUCCESS; 

} 
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The following code has a bug. What’s the problem, and how would you fix it? 
 
void bar(char *str) { 

  str = "ok bye!"; 

} 

 
int main(int argc, char *argv) { 

  char *str = "hello world!"; 

  bar(str); 

  printf("%s\n", str);  // should print "ok bye!" 

  return EXIT_SUCCESS; 

} 

 

Output Parameters 
As you can see in the above examples, pointers let us modify the parameters we pass in (more 
precisely, we can modify the data our argument points to). This leads us to a special kind of 
parameter known as an ​output parameter​. As the name suggests, this refers to a parameter 
that we use to store an output of a function. These are very common in C and you will see a lot 
of library functions that use these. 
 
Exercise: 
strcpy ​ is a function from the standard library that copies a string ​src ​ into an output parameter 
called ​dest ​ and returns a pointer to ​dest ​. Write the function below. You may assume that 
dest ​ has sufficient space to store ​src ​. 
 

char *strcpy(char *dest, char *src) { 

 

 

 

 

 

 

 

 

} 

 

Why do we need an output parameter? Why can’t we just return an array? 
 

 

 

We could’ve also returned a pointer to a ​malloc ​’d block of memory. How might this be better or 
worse than using an output parameter? 
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Pointer Arithmetic and Arrays 
We can do addition and subtraction to pointers, with a catch. Arithmetic on pointers is scaled to 
the size of the type being pointed to (in bytes). So, in the above example, ​ptr + 1 ​ would 
actually increase the value of ​ptr ​ by 4 since it points to a 32-bit integer. 
 
Arrays and pointers are very closely related.  Array subscript notation is just special syntax for 
pointer arithmetic with ​arr[i] ​ being equivalent to ​*(arr + i) ​.  Using an array name in an 
expression returns the address of the first element in the array. 
 
Exercise: 
Given the following command: “​mkdir -v cats dogs ​” and ​argv = 0x1000 ​, draw a 
box-and-arrow memory diagram of ​argv ​ and its contents for when ​mkdir ​ executes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the same information from above, what can you say about the values returned by the 
following expressions?  You may not be able to tell the exact value returned, but you should be 
able to describe what that value is/represents. 

1) argv[0] 

2) argv + 1 

3) *(argv[1] + 1) 

4) argv[0] + 1 

5) argv[0][3] 
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Exercise: 
A prefix sum over an array is the running total of all numbers in the array up to and including the 
current number. For example, given the array {1, 2, 3, 4}, the prefix sum would be {1, 3, 6, 10}. 
 
Write a function to compute the prefix sum of an array given a pointer to its first element, the 
pointer to the first element of the output array, and the length both arrays (assumed to be the 
same). 
 
void prefix_sum(int *input, int *output, int length) { 

 
 
 
 
 
 
 
 
 
 
 

 

} 

 

Git 
Common commands: 

● git clone <repo url> 
○ Downloads (“clones”) your repo from GitLab. 

● git status 
○ Prints the status of your repo (​e.g.​ changes that need to be committed). 

● git add <list of files/directories> 
○ Stages a file to be committed to the repo. Note that “​git add . ​” will stage any 

changes in the current directory and subdirectories you have made since your last 
commit. 

● git commit -m "<commit message>" 

○ Commits changes to your repo. 
● git push 

○ Pushes commits to GitLab from your local machine. 
● git pull 

○ Pulls changes from GitLab to your local machine. 
● git tag <tag> 

○ Puts a tag on your repo to indicate some important event (for this class, to indicate a 
completed homework submission). Note that you have to push tags to GitLab much 
like you would a commit. 
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