
CSE333, Autumn 2019L28: Course Wrap-Up

Course Wrap-Up
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L28: Course Wrap-Up

Course Evals

❖ Please do them as you file in!

▪ If you’re done, check pollev.com/cse333 for a little surprise ☺

❖ Lecture: https://uw.iasystem.org/survey/215106
Section AA: https://uw.iasystem.org/survey/216645
Section AB: https://uw.iasystem.org/survey/216653
Section AC: https://uw.iasystem.org/survey/216627
Section AD: https://uw.iasystem.org/survey/216638

❖ As of 11am, we’re at 28 responses right now 😭

2

https://uw.iasystem.org/survey/215106
https://uw.iasystem.org/survey/216645
https://uw.iasystem.org/survey/216653
https://uw.iasystem.org/survey/216627
https://uw.iasystem.org/survey/216638

CSE333, Autumn 2019L28: Course Wrap-Up

Administrivia

❖ Final in AND 223 on Wed, Dec 11 @ 2:30-4:20pm

▪ Topics and review packet available on the course website

▪ Review session in ECE 037 on Sun, Dec 8 @ 12-2pm

❖ Nominate your 😍AMAZING😍 TAs for the Bob Bandes
Award

3

CSE333, Autumn 2019L28: Course Wrap-Up

Course Goals

❖ Explore the gap between:

4

The computer is a magic
machine that runs programs!

Intro 351

The computer is a stupid machine
that executes really simple

instructions really fast.

CSE333, Autumn 2019L28: Course Wrap-Up

Course Map: 100,000 foot view

5

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Autumn 2019L28: Course Wrap-Up

Systems Programming:
What we just spent the quarter learning

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

▪ Programming: C / C++

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, …

• Most important: a deep(er) understanding of the “layer below”

▪ Discipline: testing, debugging, performance analysis

6

CSE333, Autumn 2019L28: Course Wrap-Up

Discipline?!?

❖ Cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Documentation (code comments, design docs)

▪ Code reviews

❖ Will take you a lifetime to learn

▪ But oh-so-important, especially for systems code

• Avoid write-once, read-never code

7

CSE333, Autumn 2019L28: Course Wrap-Up

8

Systems Programming:
Why we just spent the quarter learning it

We had two major “thesis statements” this quarter:

1. Learning to handle the unique challenges of low level
programming allows you to work directly with the
countless “systems” that take advantage of it.

CSE333, Autumn 2019L28: Course Wrap-Up

Case Study: An Internet-controlled lightbulb

9

CSE333, Autumn 2019L28: Course Wrap-Up

Case Study: An Internet-controlled lightbulb

10

CSE333, Autumn 2019L28: Course Wrap-Up

Case Study: An Internet-controlled lightbulb

❖ Turns out … a physical
timer also meets these
requirements

❖ If programmer discipline is
interesting to you,
consider CSE 331!

11

CSE333, Autumn 2019L28: Course Wrap-Up

12

Systems Programming:
Why we just spent the quarter learning it

We had two major “thesis statements” this quarter:

1. Learning to handle the unique challenges of low level
programming allows you to work directly with the
countless “systems” that take advantage of it.

2. Understanding the “layer below” makes you a better
programmer at the layer above.

CSE333, Autumn 2019L28: Course Wrap-Up

2. Understanding the “layer below” makes you a better
programmer at the layer above.

13

CSE333, Autumn 2019L28: Course Wrap-Up

Main Topics

❖ Program Execution

❖ C

▪ Low-level programming language

❖ C++

▪ The 800-lb gorilla of programming languages

▪ A “better C”: classes + STL + smart pointers + …

❖ Memory management

❖ System interfaces and services

❖ Networking basics

▪ TCP/IP, sockets, …

❖ Concurrency basics

▪ POSIX threads, synchronization
14

CSE333, Autumn 2019L28: Course Wrap-Up

Program Execution

❖ What’s in a process?

▪ Address space

▪ Current state

• Stack, SP, PC, register values, etc.

▪ Thread(s) of execution

▪ Environment

• Arguments, open files, etc.

15

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

PC

CSE333, Autumn 2019L28: Course Wrap-Up

C

❖ Created in 1972 by Dennis Ritchie

▪ Designed for creating system software

▪ Portable across machine architectures

▪ Most recently updated in 1999 (C99) and 2011 (C11)

❖ Characteristics

▪ “Low-level” language that allows us to exploit underlying features
of the architecture – but easy to fail spectacularly (!)

▪ Procedural (not object-oriented)

▪ “Weakly-typed” or “type-unsafe”

▪ Small, basic library compared to Java, C++, most others….

16

CSE333, Autumn 2019L28: Course Wrap-Up

The C/C++ Ecosystem

❖ System layers:

▪ C/C++

▪ Libraries

▪ Operating system

❖ Building Programs:
▪ Pre-processor (cpp, #include, #ifndef, …)

▪ Compiler: source code → object file (.o)

▪ Linker: object files + libraries → executable

❖ Build tools:
▪ make and related tools

▪ Dependency graphs

17

CSE333, Autumn 2019L28: Course Wrap-Up

Structure of C Programs

❖ Standard types and operators
▪ Primitives, extended types, structs, arrays, typedef, etc.

❖ Functions
▪ Defining, invoking, execution model

❖ Standard libraries and data structures
▪ Strings, streams, etc.

▪ C standard library and system calls, how they are related

❖ Modularization
▪ Declaration vs. definition

▪ Header files and implementations

▪ Internal vs. external linkage

❖ Handling errors without exception handling
▪ errno and return codes

18

CSE333, Autumn 2019L28: Course Wrap-Up

C++ (and C++11)

❖ A “better C”

▪ More type safety, stream objects, memory management, etc.

❖ References and const

❖ Classes and objects!

▪ So much (too much?) control: constructor, copy constructor,
assignment, destructor, operator overloading

▪ Inheritance and subclassing

• Dynamic vs. static dispatch, virtual functions, vtables and vptrs

• Pure virtual functions and abstract classes

• Subobjects and slicing on assignment

❖ Copy semantics vs. move semantics

19

CSE333, Autumn 2019L28: Course Wrap-Up

C++ (and C++11)

❖ C++ Casting

▪ What are they and why do we distinguish between them?

▪ Implicit conversion/construction and explicit

❖ Templates – parameterized classes and functions

▪ Similarities and differences from Java generics

▪ Template implementations via expansion

❖ STL – containers, iterators, and algorithms
▪ vector, list, map, set, etc.

▪ Copying and types

❖ Smart Pointers
▪ unique_ptr, shared_ptr, weak_ptr

▪ Reference counting and resource management

20

CSE333, Autumn 2019L28: Course Wrap-Up

Memory Management

❖ Object scope and lifetime

▪ Static, automatic, and dynamic allocation / lifetime

❖ Pointers and associated operators (&, *, ->, [])

▪ Can be used to link data or fake “call-by-reference”

❖ Dynamic memory allocation
▪ malloc/free (C), new/delete (C++)

▪ Who is responsible? Who owns the data? What happens when
(not if) you mess this up? (dangling pointers, memory leaks, …)

❖ Tools
▪ Debuggers (gdb), monitors (valgrind)

▪ Most important tool: thinking! (and drawing!)

21

CSE333, Autumn 2019L28: Course Wrap-Up

Networking

❖ Conceptual abstraction layers

▪ Physical, data link, network, transport, session, presentation,
application

▪ Layered protocol model

• We focused on IP (network), TCP (transport), and HTTP (application)

❖ Network addressing

▪ MAC addresses, IP addresses (IPv4/IPv6), DNS (name servers)

❖ Routing

▪ Layered packet payloads, security, and reliability

22

CSE333, Autumn 2019L28: Course Wrap-Up

Network Programming

Client side

1) Get remote host IP
address/port

2) Create socket

3) Connect socket to
remote host

4) Read and write data

5) Close socket

23

Server side

1) Get local host IP
address/port

2) Create socket

3) Bind socket to local host

4) Listen on socket

5) Accept connection from
client

6) Read and write data

7) Close socket

CSE333, Autumn 2019L28: Course Wrap-Up

Concurrency

❖ Why or why not?

▪ Better throughput, resource utilization (CPU, I/O controllers)

▪ Tricky to get right: harder to code and debug

❖ Threads: “lightweight”

▪ Address space sharing; separate stacks for each thread

▪ Standard C/C++ library: pthreads

❖ Processes: “heavyweight”

▪ Isolated address spaces

▪ Forking functionality provided by OS

❖ Synchronization

▪ Data races, locks/mutexes, when/how much to lock…

24

CSE333, Autumn 2019L28: Course Wrap-Up

Threads vs Processes … on One Slide!

25

fork()

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodataPCparent

Stackchild

PCchild

SPparent

SPchild

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

PARENT

SPparent

PCparent

CHILD

SPchild

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodataPCchild

CSE333, Autumn 2019L28: Course Wrap-Up

Congratulations!

❖ Look how much we learned!

❖ Studying for the exam: (your mileage may vary)

▪ Make cheat sheets first
• Review lecture slides, exercises, sections, end-of-lecture problems

• Look at topic list on website to check your coverage and help organize

• Brainstorm and trade ideas with other students

▪ “Simulate” an old exam
• Do it in one timed sitting

• Working problems is far more important than reading old answers!

▪ “Grade” yourself, then go back and review problems
• If still unsure why, ask the staff or your fellow students

• Rinse and repeat!

26

CSE333, Autumn 2019L28: Course Wrap-Up

Courses: What’s Next?

❖ CSE401: Compilers (pre-reqs: 332, 351)

▪ Finally understand why a compiler does what it does

❖ CSE451: Operating Systems (pre-reqs: 332, 333)

▪ How do you manage all of the computer’s resources?

❖ CSE452: Distributed Systems (pre-reqs: 332, 333)

▪ How do you get large collections of computers to collaborate (correctly!)?

❖ CSE461: Networks (pre-reqs: 332, 333)

▪ The networking nitty-gritty: encoding, transmission, routing, security

❖ CSE455: Computer Vision

❖ CSE457: Computer Graphics

27

CSE333, Autumn 2019L28: Course Wrap-Up

Thanks for a great quarter!
❖ Special thanks to the course content creators!!!

❖ Huge thanks to your awesome TAs!

28

Steve Gribble Hal Perkins John Zahorjan Justin Hsia

Dao Yi Farrell Fileas Lukas Joswiak Nathan Lipiarski Renshu Gu

Yifan XuTravis McGaha Yifan BaiYibo Cao

CSE333, Autumn 2019L28: Course Wrap-Up

Ask Me Anything

29

CSE333, Autumn 2019L28: Course Wrap-Up

30

