
CSE333, Autumn 2019L26: Processes

Concurrency: Processes and Events
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L26: Processes

pollev.com/cse333

About how long did Exercise 17 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I prefer not to say

2

CSE333, Autumn 2019L26: Processes

Administrivia

❖ 🎊 No more exercises! 🎊

❖ HW4 due on Thursday (12/05)

▪ You can use at most ONE late day

❖ Guest lecture on Wednesday (12/04)

▪ Albert J. Wong, Google: threat modeling and system design

3

CSE333, Autumn 2019L26: Processes

Administrivia

❖ Final exam on Wednesday (12/11)

▪ Final review sessions this weekend!

❖ Course evals

▪ Please fill them out! Your feedback is extremely valuable to us

▪ Comments are helpful!

▪ Your honesty is even more helpful!

4

CSE333, Autumn 2019L26: Processes

Lecture Outline

❖ Processes

▪ fork() and wait()

▪ Concurrency using Processes

▪ Threads vs. Processes: A Story of Efficiency

❖ Event-based Concurrency

❖ Concurrency Wrapup

5

CSE333, Autumn 2019L26: Processes

Review: Address Spaces

❖ A process executes within an
address space

▪ Includes segments for different parts
of memory

▪ Process tracks its current state using
the stack pointer (SP) and program
counter (PC)

6

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

PC

CSE333, Autumn 2019L26: Processes

Review: Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution
running in the address space
• Original thread (parent) and new

thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)
• They can cooperatively modify

shared data

7

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CSE333, Autumn 2019L26: Processes

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

• Variables, file descriptors, open sockets, the virtual address space
(code, globals, heap, stack), etc.

• *Everything is cloned except threads

❖ Primarily used in two patterns:

▪ Servers: fork a child to handle a connection

▪ Shells: fork a child that then exec’s a new program

8

pid_t fork(void);

CSE333, Autumn 2019L26: Processes

fork() and Address Spaces

❖ fork() causes the
OS to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

9

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork() CHILD

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

PARENT

SPparent

PCparent

SPchild

PCchild

CSE333, Autumn 2019L26: Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

10

parent

OS

fork()

In-memory
resources

CSE333, Autumn 2019L26: Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

11

parent child

OS

clone

In-memory
resources

In-memory
resources

CSE333, Autumn 2019L26: Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

❖ Remember that processes
become “zombies” after death

12

parent child

OS

child pid 0

In-memory
resources

In-memory
resources

CSE333, Autumn 2019L26: Processes

waitpid()

❖

▪ Block until the passed-in process has changed state (usually
terminated)

• Detailed process status available in status output parameter.

13

pid_t waitpid(pid_t pid, int *status,

int options);

CSE333, Autumn 2019L26: Processes

I need a fork()ing demo!

❖ See fork_example.cc

14

CSE333, Autumn 2019L26: Processes

Lecture Outline

❖ Processes

▪ fork() and waitpid()

▪ Concurrency using Processes

▪ Threads vs. Processes: A Story of Efficiency

❖ Event-based Concurrency

❖ Concurrency Wrapup

15

CSE333, Autumn 2019L26: Processes

Multi-processes Search Engine: Architecture

❖ The parent process blocks on accept(), waiting for a
new client to connect
▪ When a new connection arrives, the parent calls fork() to

create a child process

▪ The child process handles that new connection and subsequent
I/O, calls exit()’s when the connection terminates

16

CSE333, Autumn 2019L26: Processes

Double-fork Trick

❖ There is no “process version” of pthread_detach()

▪ How do we tell the OS to clean up the process when it’s dead?

❖ Remember that processes become “zombies” after death
▪ Option A: Parent calls waitpid() to “reap” children

▪ Option B: Parent terminates, causing children to be “adopted” by
the root process (“init” or “systemd”)

17

CSE333, Autumn 2019L26: Processes

Multi-process Search Engine: Request Flow

18

server
In-memory
resources

CSE333, Autumn 2019L26: Processes

Multi-process Search Engine: Request Flow

19

client

server accept()
In-memory
resources

CSE333, Autumn 2019L26: Processes

Multi-process Search Engine: Request Flow

20

client

server

server
fork() child

In-memory
resources

In-memory
resources

CSE333, Autumn 2019L26: Processes

Multi-process Search Engine: Request Flow

21

client

server

server
fork() child

In-memory
resources

In-memory
resources

CSE333, Autumn 2019L26: Processes

Multi-process Search Engine: Request Flow

22

client

server

server

fork() grandchild

In-memory
resources

In-memory
resources

server
In-memory
resources

CSE333, Autumn 2019L26: Processes

Multi-process Search Engine: Request Flow

23

client

server
In-memory
resources

server
In-memory
resources

child exit()’s / parent wait()’s

CSE333, Autumn 2019L26: Processes

Multi-process Search Engine: Request Flow

24

client

server
In-memory
resources

server
In-memory
resources

parent closes its
client connection

CSE333, Autumn 2019L26: Processes

Multi-process Search Engine: Request Flow

25

server
In-memory
resources

In-memory
resourcesclient server

CSE333, Autumn 2019L26: Processes

Multi-process Search Engine: Request Flow

26

server
In-memory
resources

In-memory
resourcesclient server

server

server

server

fork() grandchild
exit()

fork() child
In-memory
resources

In-memory
resources

client

CSE333, Autumn 2019L26: Processes

Multi-process Search Engine: Request Flow

27

client server

client server

server
In-memory
resources

In-memory
resources

In-memory
resources

CSE333, Autumn 2019L26: Processes

Multi-process Search Engine: Request Flow

28

client server

client server

client server

client server

client server

client server

client server

client server

client server

server

CSE333, Autumn 2019L26: Processes

pollev.com/cse333

What happens when a grandchild process finishes?

A. Zombie until grandparent exits

B. Zombie until grandparent reaps

C. Zombie until systemd reaps

D. ZOMBIE FOREVER!!!

E. I’m not sure…

29

CSE333, Autumn 2019L26: Processes

Lecture Outline

❖ Processes

▪ fork() and waitpid()

▪ Concurrency using Processes

▪ Threads vs. Processes: A Story of Efficiency

❖ Event-based Concurrency

❖ Concurrency Wrapup

31

CSE333, Autumn 2019L26: Processes

How Fast is fork()?

❖ See forklatency.cc

❖ ~ 0.500 ms per fork*

▪ ∴ maximum of (1000/0.50) = 2,000 connections/sec/core

▪ ~175 million connections/day/core

• This is fine for most servers

• Too slow for super-high-traffic front-line web services

– Facebook served ~ 750 billion page views per day in 2013!
Would need 3-6k cores just to handle fork(), i.e. without doing any work
for each connection

❖ *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …

32

CSE333, Autumn 2019L26: Processes

How Fast is pthread_create()?

❖ See threadlatency.cc

❖ ~0.070 ms per thread creation*
▪ ~10x faster than fork()

▪ ∴ maximum of (1000/0.036) = 28,000 connections/sec

▪ ~2.4 billion connections/day/core

❖ Mush faster, but writing safe multithreaded code can be
serious voodoo

❖ *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …, but will typically be an order of magnitude faster than fork()

33

CSE333, Autumn 2019L26: Processes

Lecture Outline

❖ Processes

▪ fork() and waitpid()

▪ Concurrency using Processes

▪ Threads vs. Processes: A Story of Efficiency

❖ Event-based Concurrency

❖ Concurrency Wrapup

34

CSE333, Autumn 2019L26: Processes

Review: Multi-“worker” Search Engine

35

client

client

client

client

client

client server

shared
data

structures

“The child process/thread handles that new connection
and subsequent I/O, then calls exit()/pthread_exit()

when the connection terminates”

client server

client server

server
In-memory
resources

In-memory
resources

In-memory
resources

Processes Threads

CSE333, Autumn 2019L26: Processes

Event-Driven Programming

❖ Your program is structured as an event-loop consisting of
(mostly) independent, stateless tasks executing in any
order

36

void ProcessOneTask(state) {

query_words = state.buffer;

for (idx : state.indices) {

...

}

...

}

while (1) {

event = OS.GetNextEvent();

state = GetState(event);

ProcessOneTask(state);

}

CSE333, Autumn 2019L26: Processes

One Way to Think About It

❖ Threaded code:

▪ OS and thread scheduler switch between threads for you

▪ Each thread executes its task sequentially, and per-task state is
naturally stored in the thread’s stack

❖ Event-driven code:

▪ You (or your framework) are the scheduler

• You (or your framework) also manages scheduling-related resources,
such as the connection

▪ You have to bundle up task state into continuations (data
structures describing what-to-do-next); tasks do not have their
own stacks

37

CSE333, Autumn 2019L26: Processes

Multi-Step Event-Driven Programming
❖ Each step is a brand-new event

▪ Task state must include information about which step we’re on

38

void dispatch(task, event) {

switch (task.state) {

case READING_FROM_CONSOLE:

query_words = event.query;

async_read(index, query_words[0]);

task.state = READING_FROM_INDEX;

return;

case READING_FROM_INDEX:

results = event.results;

...

}

}

while (1) {

event = OS.GetNextEvent();

task = lookup(event);

dispatch(task, event);

}

CSE333, Autumn 2019L26: Processes

Multi-Step, Event-Driven w/Async I/O

39

I
/
O

1
.
b

I
/
O

2
.
b

I
/
O

3
.
b

time

I
/
O

2
.
d

C
P
U

3
.
a

C
P
U

1
.
a

C
P
U

2
.
a

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

2
.
c

I
/
O

3
.
d

C
P
U

1
.
e

C
P
U

2
.
e

C
P
U

3
.
c

C
P
U

3
.
e

CSE333, Autumn 2019L26: Processes

Lecture Outline

❖ Processes

▪ fork() and waitpid()

▪ Concurrency using Processes

▪ Threads vs. Processes: A Story of Efficiency

❖ Event-based Concurrency

❖ Concurrency Wrapup

41

CSE333, Autumn 2019L26: Processes

Aside: Thread Pools

❖ In real servers, we’d like to avoid overhead needed to
create a new thread or process for every request

❖ Idea: Thread Pools

▪ Create a fixed set of worker threads or processes on server
startup and put them in a queue

▪ When a request arrives, remove the first worker thread from the
queue and assign it to handle the request

▪ When a worker is done, it places itself back on the queue and
then sleeps until dequeued and handed a new request

❖ Pairs naturally with event-based programming

42

CSE333, Autumn 2019L26: Processes

Why Sequential?

❖ Advantages:

▪ Simple to write, maintain, debug

▪ The default. Supported everywhere!

❖ Disadvantages:

▪ Depending on application, poor performance

• One slow client will cause all others to block

• Poor utilization of resources (CPU, network, disk)

43

CSE333, Autumn 2019L26: Processes

Why Concurrent Threads?

❖ Advantages:

▪ Almost as simple to code as sequential

▪ Concurrent execution with good CPU and network utilization

▪ Threads can run in parallel if you have multiple CPUs/cores

▪ Shared-memory communication is possible

❖ Disadvantages:

▪ Need language and OS support for threads

▪ If threads share data, you need locks or other synchronization

▪ Threads can introduce overhead (technical + cognitive)

▪ Threads have a “shared fate” (eg, “rogue” thread, shared limits)

44

CSE333, Autumn 2019L26: Processes

Why Concurrent Processes?

❖ Advantages:

▪ Almost as simple to code as sequential

▪ Concurrent execution with good CPU and network utilization

▪ Processes almost certainly run in parallel thanks to OS time-
sharing

▪ No need to synchronize access to in-memory structures

❖ Disadvantages:

▪ Processes are heavyweight

• Relatively slow to fork and context switching latency is high

▪ Communication between processes is complicated

▪ Fewer things to synchronize – but when you do need to
synchronize, it’s hard!

45

CSE333, Autumn 2019L26: Processes

Why Events?

❖ Advantages:

▪ For some kinds of programs – those with mostly-stateless, simple
responses – leads to very simple and intuitive program

• Eg, GUIs: one event handler for each UI event

❖ Disadvantages:

▪ Can lead to very complex structure for some programs

• Sequential logic gets broken up into a jumble of small event handlers

• You have to package up all task state between handlers

46

