
CSE333, Autumn 2019L25: Threads

Concurrency: Races and Locking
CSE 333 Autumn 2019

Guest Instructor: 🎉🎊Travis McGaha 🎊🎉

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L25: Threads

Administrivia

❖ Short week this week

▪ Wed lecture cancelled (but OH available in AND 223 at 11:30)

▪ 🦃 Fri holiday 🦃

❖ HW4 due in 1 ½ weeks (12/05)

❖ Ex 17 (🎊last🎊 exercise!!) out, due Wednesday

2

CSE333, Autumn 2019L25: Threads

Some Common hw4 Bugs 

❖ Your server works, but is really, really slow
▪ Check the 2nd argument to the QueryProcessor constructor

❖ Funny things happen after the first request
▪ Make sure you’re not destroying the HTTPConnection object too

early (e.g. falling out of scope in a while loop)

❖ Bikeapalooza not loading properly
▪ Check that you are handling all necessary file types. (can use the

developer console in a web browser to check this)

❖ Server crashes on a blank request
▪ Make sure that you handle the case that read() (or
WrappedRead()) returns 0

3

CSE333, Autumn 2019L25: Threads

Lecture Outline

❖ Threads: Cleanup and Data Races

❖ pthreads and Locks

❖ Other Concurrency Techniques

4

CSE333, Autumn 2019L25: Threads

pthread API Review

5

❖ D

▪ Creates a new thread, stores a thread id in *thread

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

❖ D

▪ Equivalent of exit(retval); for a thread instead of a process

▪ The thread will automatically exit once it returns from
start_routine()

int pthread_create(

pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*),

void* arg);

void pthread_exit(void* retval);

CSE333, Autumn 2019L25: Threads

pthread API review

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

❖

▪ Mark thread specified by thread as detached – it will clean up
its resources as soon as it terminates

6

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread, void** retval);

CSE333, Autumn 2019L25: Threads

pthread Demos

❖ See pthread.c

▪ Notice how we manage memory

• When do we allocate deallocate memory?

• How do we pass possession of memory to threads?

❖ See exit_thread.c

▪ Do we need to join every thread we create?

7

CSE333, Autumn 2019L25: Threads

Data Races

❖ a data race occurs when two or more different threads
access the same location, at least one thread changes that
memory, and they occur one after another

▪ Means that the result of a program can vary depending on chance
(which thread ran first?)

8

CSE333, Autumn 2019L25: Threads

Data Race Example

❖ If your fridge has no milk,
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

9

if (!milk) {

buy milk

}

! !

CSE333, Autumn 2019L25: Threads

pollev.com/cse333

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milks

D. We’re lost…

10

if (!note) {

if (!milk) {

leave note

buy milk

remove note

}

}

CSE333, Autumn 2019L25: Threads

Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways,
depending on the specifics of the data structure

❖ Example: two threads try to read from and write to the
same shared memory location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head
of the linked list at the same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure! 
11

CSE333, Autumn 2019L25: Threads

Lecture Outline

❖ Difficulties with Threads: Cleanup and Data Races

❖ pthreads and Locks

❖ Other Concurrency Techniques

12

CSE333, Autumn 2019L25: Threads

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented
(see CSE 451)

❖ Goals of synchronization:

▪ Safety – avoid unintended interactions with shared data
structures (informally: “nothing bad happens”)

▪ Liveness – ability to execute in a timely manner
(informally: “something good happens”)

13

CSE333, Autumn 2019L25: Threads

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

14

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle
if locked

❖ Pseudocode:

CSE333, Autumn 2019L25: Threads

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

15

fridge.lock()

if (!milk) {

buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

buy milk

}

milk_lock.unlock()

CSE333, Autumn 2019L25: Threads

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

16

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

CSE333, Autumn 2019L25: Threads

pthread Mutex Examples

❖ See total.cc

▪ Data race between threads

❖ See total_locking.cc

▪ Adding a mutex fixes our data race

❖ How does this compare to sequential code?

▪ Likely slower – only 1 thread can increment at a time, but have to
deal with checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then
adds its value (once!) to the shared variable at the end

▪ See total_locking_better.cc

17

CSE333, Autumn 2019L25: Threads

C++11 Threads

❖ C++11 added threads and concurrency to its libraries
▪ <thread> – thread objects

▪ <mutex> – locks to handle critical sections

▪ <condition_variable> – used to block objects until
notified to resume

▪ <atomic> – indivisible, atomic operations

▪ <future> – asynchronous access to data

▪ These might be built on top of <pthread.h>, but also might
not be

18

CSE333, Autumn 2019L25: Threads

Lecture Outline

❖ Difficulties with Threads: Cleanup and Data Races

❖ pthreads and Locks

❖ Other Concurrency Techniques

19

CSE333, Autumn 2019L25: Threads

Review: Why Sequential?

❖ Advantages:

▪ Simple to write, maintain, debug

▪ The default, supported everywhere

❖ Disadvantages:

▪ Depending on application, poor performance

• One slow client will cause all others to block

• Poor utilization of resources (CPU, network, disk)

20

CSE333, Autumn 2019L25: Threads

Review: Why Concurrent Threads?

❖ Advantages:

▪ Almost as simple to code as sequential

▪ Concurrent execution with good CPU and network utilization

▪ Threads can run in parallel if you have multiple CPUs/cores

▪ Shared-memory communication is possible

❖ Disadvantages:

▪ Need language and OS support for threads

▪ If threads share data, you need locks or other synchronization

▪ Threads can introduce overhead (technical + cognitive)

▪ Threads have a “shared fate” (eg, “rogue” thread, shared limits)

21

CSE333, Autumn 2019L25: Threads

Alternative: Different I/O Handling (1 of 2)

❖ Use asynchronous or non-blocking I/O

❖ Your program begins processing a task

▪ When your program needs to read data to make further progress,
it registers interest in the data with the OS and then switches to a
different task

▪ The OS handles the details of issuing the read on the
disk/console/network

▪ When data becomes available, the OS lets your program know

❖ Your program (almost never) blocks on I/O

22

CSE333, Autumn 2019L25: Threads

Alternative: Different I/O Handling (2 of 2)

❖ But some devices can truly block your program

▪ Remote computer may wait arbitrarily long before sending data

▪ User may walk away from console

❖ How to use non-blocking I/O:

▪ Enable non-blocking I/O on its file descriptors

▪ Issue read() and write() system calls

• If the read/write would block, the system call returns immediately

▪ Ask the OS which file descriptors are readable/writeable

• Can choose to block while no file descriptors are ready

23

CSE333, Autumn 2019L25: Threads

Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides fork()

❖ Disadvantages:

▪ More overhead than threads during creation and context
switching

▪ Cannot easily share memory between processes – typically
communicate through the file system

24

