
CSE333, Autumn 2019L24: Intro to Concurrency

Concurrency: Intro and Threads
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L24: Intro to Concurrency

pollev.com/cse333

About how long did Exercise 16 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I prefer not to say

2

CSE333, Autumn 2019L24: Intro to Concurrency

Administrivia

❖ HW4 due two Thursdays from now (12/05)

▪ You can use at most ONE late day

❖ Short week next week:

▪ Wed lecture cancelled (but OH available in AND 223 at 11:30)

▪ 🦃 Fri holiday 🦃

3

CSE333, Autumn 2019L24: Intro to Concurrency

Lecture Outline

❖ HTTP/2 Review

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Threads

❖ Search Server with pthreads

4

CSE333, Autumn 2019L24: Intro to Concurrency

HTTP/1.1 Feature: Persistent connections

❖ Establishing a TCP connection is costly

▪ Multiple network round trips to set up the TCP connection

▪ TCP has a feature called “slow start”; slowly grows the rate at
which a TCP connection transmits to avoid overwhelming
networks

❖ A web page consists of multiple objects and a client
probably visits several pages on the same server

▪ Bad idea: separate TCP connection for each object

▪ Better idea: single TCP connection, multiple requests

5

CSE333, Autumn 2019L24: Intro to Concurrency

HTTP/2 (2 of 3)

❖ Based on Google SPDY (2010) ; standardized in 2015

❖ Features:

▪ Same core request/response model (GET, POST, OK, …)

▪ Binary protocol

• Easier parsing by machines (harder for humans)

• Sizes in headers, not discovered as requests are processed

• Headers compressed and deduplicated by default!

▪ Multiple data steams multiplexed on single TCP connection

• Fixes “head-of-line blocking”

• With priorities on the streams!

▪ Server push and more…

6

CSE333, Autumn 2019L24: Intro to Concurrency

Lecture Outline

❖ HTTP/2 Review

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Threads

❖ Search Server with pthreads

7

CSE333, Autumn 2019L24: Intro to Concurrency

Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

❖ We need:

▪ Something that turns HTTP requests into well-formed queries

8

CSE333, Autumn 2019L24: Intro to Concurrency

Search Engine Architecture

9

query
processor client

index
file

index
file

index
file

HTTP
Server

CSE333, Autumn 2019L24: Intro to Concurrency

Search Engine (Pseudocode)

10

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

return doclist;

}

main() {

SetupServerToReceiveConnections();

while (1) {

string query_words[] = GetNextQuery();

results = Lookup(query_words[0]);

foreach word in query[1..n] {

results = results.intersect(Lookup(word));

}

Display(results);

}

}

CSE333, Autumn 2019L24: Intro to Concurrency

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

11

CSE333, Autumn 2019L24: Intro to Concurrency

Execution Timeline: One multi-word query

12

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

f
i
l
e
.
r
e
a
d
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

f
i
l
e
.
r
e
a
d
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

f
i
l
e
.
r
e
a
d
(
)

n
e
t
w
o
r
k

I
/
O

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

CSE333, Autumn 2019L24: Intro to Concurrency

Execution Timeline: To Scale

13

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

CSE333, Autumn 2019L24: Intro to Concurrency

Multiple (Single-Word) Queries

14

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

CSE333, Autumn 2019L24: Intro to Concurrency

Multiple Queries: To Scale

15

I
/
O

1
.
b

I
/
O

1
.
d

time

query 2

query 1

I
/
O

1
.
b

I
/
O

1
.
d

I
/
O

1
.
b

I
/
O

1
.
d

CSE333, Autumn 2019L24: Intro to Concurrency

Uh-Oh (1 of 2)

16

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

CSE333, Autumn 2019L24: Intro to Concurrency

Uh-Oh (2 of 2)

17

query
processor client

index
fileWT

index
file

index
file

HTTP
Server

client

client

client

client

CSE333, Autumn 2019L24: Intro to Concurrency

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

18

CSE333, Autumn 2019L24: Intro to Concurrency

Lecture Outline

❖ HTTP/2 Review

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Threads

❖ Search Server with pthreads

19

CSE333, Autumn 2019L24: Intro to Concurrency

Concurrency

❖ Concurrency != parallelism

▪ Concurrency is doing multiple tasks at a time

▪ Parallelism is executing multiple CPU instructions simultaneously

❖ Our search engine could run concurrently:

▪ Example: Execute queries one at a time, but issue I/O requests
against different files/disks simultaneously

• Could read from several index files at once, processing the I/O results
as they arrive

▪ Example: Our web server could execute multiple queries at the
same time

• While one is waiting for I/O, another can be executing on the CPU

20

CSE333, Autumn 2019L24: Intro to Concurrency

A Concurrent Implementation

❖ Use multiple “workers”

▪ As a query arrives, create a new “worker” to handle it

• The “worker” reads the query from the network, issues read requests
against files, assembles results and writes to the network

• The “worker” uses blocking I/O; the “worker” alternates between
consuming CPU cycles and blocking on I/O

▪ The OS context switches between “workers”

• While one is blocked on I/O, another can use the CPU

• Multiple “workers’” I/O requests can be issued at once

❖ So what should we use for our “workers”?

21

CSE333, Autumn 2019L24: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Threads

❖ Search Server with pthreads

22

CSE333, Autumn 2019L24: Intro to Concurrency

Review: Processes

❖ To implement a “process”, the operating system gives us:

▪ Resources such as file handles and sockets

▪ Call stack + registers to support (eg, PC, SP)

▪ Virtual memory (page tables, TLBs, etc …)

❖ If we want concurrency, what is the “minimal set” we
need to execute a single line of code?

23

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

“Worker” 2“Worker” 1

CSE333, Autumn 2019L24: Intro to Concurrency

Introducing Threads

❖ Separate the concept of a process from the “thread of
execution”

▪ Usually called a thread, this is a sequential execution stream
within a process

❖ In most modern OS’s:

▪ Process: address space, OS resources, security attributes

▪ Thread: stack, stack pointer, program counter, registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

24

thread

CSE333, Autumn 2019L24: Intro to Concurrency

Threads

❖ Threads were formerly called “lightweight processes”

▪ They execute concurrently like processes

• OS’s often treat them, not processes, as the unit of scheduling

• Parallelism for free! If you have multiple CPUs/cores, can run them
simultaneously

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

– But, they can interfere with each other – need synchronization for shared
resources

• Each thread has its own stack

❖ What does the OS do when you switch processes?

▪ How does that differ from switching threads?

25

CSE333, Autumn 2019L24: Intro to Concurrency

Multi-threaded Search Engine (Pseudocode)

26

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist

doclist.append(file.read(hit));

return doclist;

}

ProcessQuery() {

results = Lookup(query_words[0]);

foreach word in query[1..n]

results = results.intersect(Lookup(word));

Display(results);

}

main() {

while (1) {

string query_words[] = GetNextQuery();

CreateThread(ProcessQuery());

}

}

CSE333, Autumn 2019L24: Intro to Concurrency

Multi-threaded Search Engine (Execution)

27

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

CSE333, Autumn 2019L24: Intro to Concurrency

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

28

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CSE333, Autumn 2019L24: Intro to Concurrency

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

29

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CSE333, Autumn 2019L24: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Threads

❖ Search Server with pthreads

30

CSE333, Autumn 2019L24: Intro to Concurrency

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language (cf. Java)

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

31

CSE333, Autumn 2019L24: Intro to Concurrency

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

❖

▪ Equivalent of exit(retval); for a thread instead of a process

▪ The thread will automatically exit once it returns from
start_routine()

32

int pthread_create(

pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*),

void* arg);

void pthread_exit(void* retval);

CSE333, Autumn 2019L24: Intro to Concurrency

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

❖

▪ Mark thread specified by thread as detached – it will clean up
its resources as soon as it terminates

33

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread, void** retval);

CSE333, Autumn 2019L24: Intro to Concurrency

Multi-threaded Search Engine: Architecture

❖ A single process handles all of the connections, but a
parent thread dispatches (creates) a new thread to handle
each connection

▪ The child thread handles the new connection and subsequent I/O,
then exits when the connection terminates

❖ See searchserver_threads/ for code if curious

34

CSE333, Autumn 2019L24: Intro to Concurrency

Multi-threaded Search Engine: Request Flow

35

client

server

accept()

CSE333, Autumn 2019L24: Intro to Concurrency

Multi-threaded Search Engine: Request Flow

36

client

server

pthread_create()

pthread_detach()

CSE333, Autumn 2019L24: Intro to Concurrency

Multi-threaded Search Engine: Request Flow

37

client

server

accept()

client

CSE333, Autumn 2019L24: Intro to Concurrency

Multi-threaded Search Engine: Request Flow

38

client

client

server

pthread_create()

CSE333, Autumn 2019L24: Intro to Concurrency

Multi-threaded Search Engine: Request Flow

39

client

client

client

client

client

client
server

shared
data

structures

CSE333, Autumn 2019L24: Intro to Concurrency

pthread Examples

❖ pthread.c: pthreads in C

❖ pthread.cc: Same, but in C++

❖ searchserver_threads: Non-trivial example

❖ Things to keep in mind while reading:

▪ More instructions per thread = higher likelihood of interleaving

▪ How do you handle memory management?

• Who allocates and deallocates memory?

• Can two threads call new at the same time?

▪ When calling pthread_create(), start_routine points
to a function that takes only one argument (a void*)

• To pass complex arguments into the thread, create a struct to bundle
the necessary data

40

CSE333, Autumn 2019L24: Intro to Concurrency

Why Threads? (1 of 2)

❖ Advantages:

▪ Almost as simple to code as sequential

• In fact, most of the code is identical! (but a bit more complicated to
dispatch a thread)

▪ Threads can run in parallel if you have multiple CPUs/cores

▪ Concurrent execution with good CPU and network utilization

• Some overhead, but less than processes

▪ Shared-memory communication is possible

41

CSE333, Autumn 2019L24: Intro to Concurrency

Why Threads? (2 of 2)

❖ Disadvantages:

▪ Need language and OS support for threads

▪ If threads share data, you need locks or other synchronization

• See next lecture: Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• See next lecture: Lock contention, context switch overhead, CPU
thrashing, and other issues

• Also cognitive overhead for future programmers!

▪ Threads within the same process have a “shared fate”

• Eg, shared file-handle limits, no crash isolation, etc.

42

CSE333, Autumn 2019L24: Intro to Concurrency

Why Sequential?

❖ Advantages:

▪ Simple to write, maintain, debug

▪ The default, supported everywhere

❖ Disadvantages:

▪ Depending on application, poor performance

• One slow client will cause all others to block

• Poor utilization of resources (CPU, network, disk)

43

