YW UNIVERSITY of WASHINGTON

L24: Intro to Concurrency

Concurrency: Intro and Threads

CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas
Nathan Lipiarski Renshu Gu
Yibo Cao Yifan Bai

Lukas Joswiak
Travis McGaha
Yifan Xu

CSE333, Autumn 2019

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

0 Poll Everywhere pollev.com/cse333

About how long did Exercise 16 take?

A.

B. 1-2Hours

C. 2-3 Hours

D. 3-4 Hours

E. 4+ Hours

F. | prefer not to say

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Administrivia

» HW4 due two Thursdays from now (12/05)

" You can use at most ONE late day

+» Short week next week:
= Wed lecture cancelled (but OH available in AND 223 at 11:30)

= w Fri holiday w

YW UNIVERSITY of WASHINGTON L24: Intro to Concurrency

Lecture Outline

+» HTTP/2 Review

+» From Query Processing to a Search Server
+ Intro to Concurrency

+» Threads

+ Search Server with pthreads

CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON

L24: Intro to Concurrency

CSE333, Autumn 2019

HTTP/1.1 Feature: Persistent connections

/

+ Establishing a TCP connection is costly

" Multiple network round trips to set up the TCP connection

" TCP has a feature called “slow start”; slowly grows the rate at

which a TCP connection transmits to avoid overwhelming
networks

+» A web page consists of multiple objects and a client
probably visits several pages on the same server

= Badidea: separate TCP connection for each object

= Better idea: single TCP connection, multiple requests

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

1P Conn .

HTTP/2 (2 of 3) o

+~ Based on Google SPDY (2010) ; standardized in 20{L5. .

LA

+ Features: ey Shem3

= Same core request/response model (GET, POST, OK, ...)
= Binary protocol

- Easier parsing by machines (harder for humans)
- Sizes in headers, not discovered as requests are processed
- Headers compressed and deduplicated by default!
" Multiple data steams multiplexed on single TCP connection
- Fixes “head-of-line blocking”
- With priorities on the streams!

= Server push and more...

YW UNIVERSITY of WASHINGTON L24: Intro to Concurrency

Lecture Outline

+» HTTP/2 Review

+» From Query Processing to a Search Server
+ Intro to Concurrency

+» Threads

+ Search Server with pthreads

CSE333, Autumn 2019

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Building a Web Search Engine

+ We have:

= A web index
- A map from <word> to <list of documents containing the word>
- This is probably sharded over multiple files
" A query processor
- Accepts a query composed of multiple words
- Looks up each word in the index
- Merges the result from each word into an overall result set

+ We need:

= Something that turns HTTP requests into well-formed queries

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Search Engine Architecture

index
file

v

index L
file Sm— client

index
file

YW UNIVERSITY of WASHINGTON

L24: Intro to Concurrency

Search Engine (Pseudocode)

\oV

CSE333, Autumn 2019

(doclist Lookup (string word) {
bucket = hash (word);

hitlist = file.read (bucket);
foreach hit in hitlist {

doclist.append(file.read (hit));
}

return doclist;

}

main () {
SetupServerToReceiveConnections () ;
while (1) {

string query words[] = GetNextQuery ()

results = Lookup (query words[0]);
foreach word in query[l..n] {

}
Display (results) ;

results = results.intersect (Lookup (word)) ;

10

YW UNIVERSITY of WASHINGTON L24: Intro to Concurrency

What About I/O-caused Latency?

CSE333, Autumn 2019

+ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

+

Numbers Everyone Should Know
L1l cache reference OIS In'S
Branch mispredict Sllints
L2 cache reference 7 ns
Mutex lock/unlock LI gl
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory i VR (010 o=
Round trip within same datacenter S ORORINnts
Disk seek 1L0) - (000 - @00 @E
= Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA ILS(0) 4 @005 OX0) S
Google -

11

CSE333, Autumn 2019

L24: Intro to Concurrency

z.
O
T.
Q
z
T
v
<
=
—
e
v
o
[S&]
=
Z.
=)

: One multi-word query

Execution Timeline

() AxzondaxeN3I®D

O/I MIomisu —_—

() Aetdstq
() 30®sa=23UuT " S3TNsSaI

0/I ¥STP

(Jpesa o113
() dnyooT

O/I STP

query

()pesx-9T13
() dnyoo

O/I STP

()pesax o113
() dnyooT

O/I MIomisu

() AxondaxsN3I®D
()uteu

12

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Execution Timeline: To Scale
CP e hAsS\n‘urese 41"3 shuers

— S

network I/O
disk I/0
disk I/0
disk I/0

network I/0

main ()

N (P is idle. in theg colored blocks<l——

|‘ query '|

13

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Multiple (Single-Word) Queries

Lookupb st
imit gk Q a(\c\
G\QN&C\QMJQ 2221& OL}\

s2p

s ey) l
| o)

query 2

query 1

14

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Multiple Queries: To Scale

CRV s b\/\&\g 0 hese
’\'\mé slwes

15

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Uh-Oh (1 of 2)

Only one I/O request at
The CPU is idle most a time is “in flight”

of the time! /

(picture not to scale)

Queries don’t run until
earlier queries finish

query 1

16

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Uh-Oh (2 of 2)

index
file client
client
index query]
fileWT processor client
client
index
file client

17

CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON L24: Intro to Concurrency

Sequential Can Be Inefficient

+» Only one query is being processed at a time
= All other queries queue up behind the first one
= And clients queue up behind the queries ...

*

+» Even while processing one query, the CPU is idle the vast
majority of the time

" |tis blocked waiting for |/O to complete
- Disk I/O can be very, very slow (10 million times slower ...)

L)

+ At most one I/O operation is in flight at a time

= Missed opportunities to speed I/O up
- Separate devices in parallel, better scheduling of a single device, etc.

18

YW UNIVERSITY of WASHINGTON L24: Intro to Concurrency

Lecture Outline

+» HTTP/2 Review

+» From Query Processing to a Search Server
« Intro to Concurrency

+» Threads

+ Search Server with pthreads

CSE333, Autumn 2019

19

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Concurrency

+» Concurrency != parallelism
= Concurrency is doing multiple tasks at a time
= Parallelism is executing multiple CPU instructions simultaneously

« Our search engine could run concurrently:

= Example: Execute queries one at a time, but issue //O requests
against different files/disks simultaneously

- Could read from several index files at once, processing the 1/0 results
as they arrive

= Example: Our web server could execute multiple queries at the
same time

- While one is waiting for /0O, another can be executing on the CPU

20

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

A Concurrent Implementation

+» Use multiple “workers”

= As a query arrives, create a new “worker” to handle it

- The “worker” reads the query from the network, issues read requests
against files, assembles results and writes to the network

- The “worker” uses blocking I/0; the “worker” alternates between
consuming CPU cycles and blocking on I/O

" The OS context switches between “workers”
« While one is blocked on I/O, another can use the CPU

12

- Multiple “workers’ 1/0O requests can be issued at once

« So what should we use for our “workers”?

21

YW UNIVERSITY of WASHINGTON L24: Intro to Concurrency

Lecture Outline

+» From Query Processing to a Search Server
+ Intro to Concurrency
+» Threads

+ Search Server with pthreads

CSE333, Autumn 2019

22

CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON L24: Intro to Concurrency

Review: Processes

+ To implement a “process”, the operating system gives us:
= Resources such as file handles and sockets
= Call stack + registers to support (eg, PC, SP)
= Virtual memory (page tables, TLBs, etc ...)

+ |f we want concurrency, what is the “minimal set” we
need to execute a single line of code?

“Worker” 1 “Worker” 2

bucket = hash (word) :; foreach hit in hitlist {
hitlist = file.read (bucket); doclist.append(file.read (hit));
}

23

L24: Intro to Concurrency CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON

Introducing Threads

+ Separate the concept of a process from the “thread of
execution”
= Usually called a thread, this is a sequential execution stream
within a process

thread

+ In most modern OS’s:
" Process: address space, OS resources, security attributes
" Thread: stack, stack pointer, program counter, registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

24

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Threads

«» Threads were formerly called “lightweight processes”

" They execute concurrently like processes
- OS’s often treat them, not processes, as the unit of scheduling

- Parallelism for free! If you have multiple CPUs/cores, can run them
simultaneously

= Unlike processes, threads cohabitate the same address space

- Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

— But, they can interfere with each other — need synchronlzatlon for shared -;5-\(
\ r
resources 33@ \/\("\\/\C‘\ 2V)(% S

- Each thread has its own stack P @ C ’

+» What does the OS do when you SW|tch processes?
" How does that differ from switching threads?

25

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Multi-threaded Search Engine (Pseudocode)

(. N
main () {
cuel while (1) {
Sﬁ:VwﬁﬁJ string query words[] = GetNextQuery ()
(CreateThread (ProcessQuery ()) ;
\oOy |

\ abw3 '?(o cesg\ nﬂ \f\&W@(\S n a ‘“\(‘@éj

.

\

[doclist Lookup (string word) {
bucket = hash (word);
hitlist = file.read (bucket);
foreach hit in hitlist
doclist.append(file.read (hit));
return doclist;

}

ProcessQuery () {
results = Lookup (query words[0]);
foreach word in query[l..n]
results = results.intersect (Lookup (word)) ;

Display (results);
}

26

CSE333, Autumn 2019

YA UNIVERSITY of WASHINGTON L24: Intro to Concurrency

Multi-threaded Search Engine (Execution)

AR \,
@W\

< vehuock Tfo auery3
%E}&\SOLY;Q&V\ 4 ovel \&P

(d) 1s dtS\Q 1lo
G0 qoesh

O\F?f\ query 2
e;\-\&\e?j\)

query 1

27

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Single-Threaded Address Spaces

_ + Before creating a thread

Stack

RIS 1Pafent " One thread of execution running
in the address space
- One PC, stack, SP
t " That main thread invokes a
Shared Libraries function to create a new thread
t - Typically pthread create ()

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
o = .text, .rodata

parent

28

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Multi-threaded Address Spaces

_ + After creating a thread

SRININ Stacipa“’-“t = Two threads of execution running
in the address space
SR StaclkCh”d - Original thread (parent) and new
T thread (child)
\ . :
Nor Yo sale ! Shared Libraries New stack created for child thread
Hneead Stucks ' - Child thread has its own values of
qu\(\l& \ j\O the PC and SP
(y4-bt addr Heap (rﬁauoc/free) = Both threads share the other
ac® el iitie SegmsiE segments (code, heap, globals)

.data, .bss

N

- They can cooperatively modify

PC oy = Read-Only Segments shared data

e .text, .rodata

parent

29

YW UNIVERSITY of WASHINGTON L24: Intro to Concurrency

Lecture Outline

+» From Query Processing to a Search Server
+ Intro to Concurrency
+» Threads

+» Search Server with pthreads

CSE333, Autumn 2019

30

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

POSIX Threads (pthreads)

+» The POSIX APIs for dealing with threads

" Declaredinpthread.h
- Not part of the C/C++ language (cf. Java)

" To enable support for multithreading, must include —-pthread
flag when compiling and linking with gcc command

31

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Creating and Terminating Threads

o (int pthread create (
' \ _ > pthread t* thread
ke oed be P _ :
Eﬁil) (3 const pthread attr t* attr,
void* (*start routine) (void*),
void* argqg); |

\.

= Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

= Returns 0 on success and an error number on error (can check
against error constants) \Ce AT O aluct

" The new thread runs start routine (C@A’\&w\\r\ e

&pu &3 QNE

0

¢ | void pthread exit (void* retval);

" Equivalentof exit (retval) ; for athread instead of a process

" The thread will automatically exit once it returns from

start routine ()
- 32

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

What To Do After Forking Threads?

<+ | int pthread join(pthread t thread, void** retval);

= Waits for the thread specified by thread to terminate
= The thread equivalent of waitpid ()
" The exit status of the terminated thread is placed in **retval

o (int pthread detach(pthread t thread); J

= Mark thread specified by thread as detached — it will clean up
its resources as soon as it terminates

33

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Multi-threaded Search Engine: Architecture

+ A single process handles all of the connections, but a
parent thread dispatches (creates) a new thread to handle
each connection

" The child thread handles the new connection and subsequent 1/0,
then exits when the connection terminates

» See searchserver threads/ for code if curious

34

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Multi-threaded Search Engine: Request Flow

server

35

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Multi-threaded Search Engine: Request Flow

) pthread create()

m pthread detach(()

server

36

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Multi-threaded Search Engine: Request Flow

server

37

W UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Multi-threaded Search Engine: Request Flow

S
/l pthread create ()

server

38

shared
data
structures

server

39

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

pthread Examples

D)

*

pthread.c: pthreadsinC

*

+» pthread.cc: Same, butin C++

+ searchserver threads: Non-trivial example

*

>

+ Things to keep in mind while reading:

"= More instructions per thread = higher likelihood of interleaving

L)

®" How do you handle memory management?
- Who allocates and deallocates memory?
- Can two threads call new at the same time?

" When callingpthread create (), start routine points
to a function that takes only one argument (a void¥*)

- To pass complex arguments into the thread, create a struct to bundle

the necessary data
40

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Why Threads? (1 of 2)

+» Advantages:

= Almost as simple to code as sequential

- In fact, most of the code is identical! (but a bit more complicated to
dispatch a thread)

" Threads can run in parallel if you have multiple CPUs/cores
= Concurrent execution with good CPU and network utilization

- Some overhead, but less than processes

= Shared-memory communication is possible

41

YW UNIVERSITY of WASHINGTON L24: Intro to Concurrency

CSE333, Autumn 2019

Why Threads? (2 of 2)

+ Disadvantages:

" Need language and OS support for threads

" |f threads share data, you need locks or other synchronization
- See next lecture: Very bug-prone and difficult to debug

" Threads can introduce overhead

- See next lecture: Lock contention, context switch overhead, CPU
thrashing, and other issues

- Also cognitive overhead for future programmers!

" Threads within the same process have a “shared fate”
- Eg, shared file-handle limits, no crash isolation, etc.

42

w UNIVERSITY of WASHINGTON L24: Intro to Concurrency CSE333, Autumn 2019

Why Sequential?

+» Advantages:
= Simple to write, maintain, debug
" The default, supported everywhere

+ Disadvantages:

= Depending on application, poor performance
« One slow client will cause all others to block
- Poor utilization of resources (CPU, network, disk)

43

