
CSE333, Autumn 2019L23: HTTP

Hypertext Transfer Protocol
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L23: HTTP

Administrivia

❖ Ex16 extended until Friday

❖ No exercise assigned today!

❖ HW4 due two Thursdays from now (12/05)

▪ You can use at most ONE late day

2

CSE333, Autumn 2019L23: HTTP

Lecture Outline

❖ HTTP: Hypertext Transfer Protocol

▪ Client Requests

▪ Server Responses

❖ Advanced features and HTTP/2

3

CSE333, Autumn 2019L23: HTTP

Learning Objectives

❖ Be able to implement a basic version of the HTTP protocol

▪ i.e. Understand what components make up HTTP requests and
responses

▪ You will do this on HW4

❖ See an example of a protocol that is well-designed for its
purpose, and understand why

▪ C, POSIX, and now HTTP: all have aged well due to programmer
discipline

4

CSE333, Autumn 2019L23: HTTP

HTTP Basics

❖ A client establishes one or more TCP connections to a
server

▪ The client sends a request for a web object over a connection and
the server replies with the object’s contents

❖ We have to figure out how to let the client and server
communicate their intentions to each other clearly

▪ We have to define a protocol

5

“I’d like index.html”

“Found it, here it is: (index.html)”

CSE333, Autumn 2019L23: HTTP

Protocols

❖ A protocol is a set of rules governing the format and
exchange of messages in a computing system

▪ What messages can a client exchange with a server?

• What is the syntax of a message?

• What do the messages mean?

• What are legal replies to a message?

▪ What sequence of messages are legal?

• How are errors conveyed?

❖ A protocol is (roughly) the network equivalent of an API

6

CSE333, Autumn 2019L23: HTTP

HTTP: Hypertext Transport Protocol

❖ A request / response protocol

▪ A client (web browser) sends a request to a web server

▪ The server processes the request and sends a response

❖ Typically, a request asks a server to retrieve a resource

▪ A resource is an object or document, named by a Uniform
Resource Identifier (URI)

❖ A response indicates whether or not the server succeeded

▪ If so, it provides the content of the requested response

❖ https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

7

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

CSE333, Autumn 2019L23: HTTP

Lecture Outline

❖ HTTP: Hypertext Transfer Protocol

▪ Client Requests

▪ Server Responses

❖ Advanced features and HTTP/2

8

CSE333, Autumn 2019L23: HTTP

HTTP Requests

❖ General form:
▪ [METHOD] [request-uri] HTTP/[version]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[request body, if any]

❖ Demo: use nc -l to see a real request

9

CSE333, Autumn 2019L23: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

10

GET:

REQUEST

RESPONSE

HEADERS

BODY

HEADERS

CLIENT
(Web Browser)

SERVER

CSE333, Autumn 2019L23: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

11

POST:

REQUEST

RESPONSE

HEADERS

BODY

HEADERS

CLIENT
(Web Browser)

SERVER

CSE333, Autumn 2019L23: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

▪ HEAD: “Send me the headers for the named resource”

12

HEAD:

REQUEST

RESPONSE

HEADERS

HEADERS

CLIENT
(Web Browser)

SERVER

CSE333, Autumn 2019L23: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

▪ HEAD: “Send me the headers for the named resource”

• Doesn’t send resource; often to check if cached copy is still valid

13

HEAD:

REQUEST

RESPONSE

HEADERS

HEADERS

CLIENT
(Web Browser)

SERVER

CSE333, Autumn 2019L23: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

▪ HEAD: “Send me the headers for the named resource”

• Doesn’t send resource; often to check if cached copy is still valid

❖ Other methods exist, but are much less common:
▪ PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH, ...

• Eg: TRACE is “show any proxies or caches in between me and the
server”

14

CSE333, Autumn 2019L23: HTTP

Client Headers

❖ The client can provide one or more request “headers”

▪ These provide information to the server or modify how the server
should process the request

❖ You’ll encounter many in practice
▪ Host: the DNS name of the server

▪ User-Agent: an identifying string naming the browser

▪ Accept: the content types the client prefers or can accept

▪ Cookie: an HTTP cookie previously set by the server

▪ https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

15

https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

CSE333, Autumn 2019L23: HTTP

A Real Request

16

GET / HTTP/1.1

Host: attu.cs.washington.edu:3333

Connection: keep-alive

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,

image/apng,*/*;q=0.8

DNT: 1

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: SESS0c8e598bbe17200b27e1d0a18f9a42bb=5c18d7ed6d369d56b69a1c0aa441d7

8f; SESSd47cbe79be51e625cab059451de75072=d137dbe7bbe1e90149797dcd89c639b1;

_sdsat_DMC_or_CCODE=null; _sdsat_utm_source=; _sdsat_utm_medium=; _sdsat_ut

m_term=; _sdsat_utm_content=; adblock=blocked; s_fid=50771A3AC73B3FFF-3F18A

ABD559FFB5D; s_cc=true; prev_page=science.%3A%2Fcontent%2F347%2F6219%2F262%

2Ftab-pdf; ist_usr_page=1; sat_ppv=79; ajs_anonymous_id=%229225b8cf-6637-49

c8-8568-ecb53cfc760c%22; ajs_user_id=null; ajs_group_id=null; __utma=598078

07.316184303.1491952757.1496310296.1496310296.1; __utmc=59807807; __utmc=80

...

CSE333, Autumn 2019L23: HTTP

Lecture Outline

❖ HTTP: Hypertext Transfer Protocol

▪ Client Requests

▪ Server Responses

❖ Advanced features and HTTP/2

17

CSE333, Autumn 2019L23: HTTP

HTTP Responses

❖ General form:
▪ HTTP/[version] [status code] [reason]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[response body, if any]

❖ Demo: use nc -C to see a real response

▪ On Mac, use nc -c instead . 👎 for lack of standards 

18

CSE333, Autumn 2019L23: HTTP

Status Codes and Reason

❖ Code: numeric outcome of the request – easy for
computers to interpret

▪ A 3-digit integer with the 1st digit indicating a response category

• 1xx: Informational message

• 2xx: Success

• 3xx: Redirect to a different URL

• 4xx: Error in the client’s request

• 5xx: Error experienced by the server

❖ Reason: human-readable explanation

▪ e.g. “OK” or “Moved Temporarily”

19

CSE333, Autumn 2019L23: HTTP

Common Statuses

❖ HTTP/1.1 200 OK

▪ The request succeeded and the requested object is sent

❖ HTTP/1.1 404 Not Found

▪ The requested object was not found

❖ HTTP/1.1 301 Moved Permanently

▪ The object exists, but its name has changed

• The new URL is given as the “Location:” header value

❖ HTTP/1.1 500 Server Error

▪ The server had some kind of unexpected error

20

CSE333, Autumn 2019L23: HTTP

Server Headers

❖ The server can provide zero or more response “headers”

▪ These provide information to the client or modify how the client
should process the response

❖ You’ll encounter many in practice
▪ Server: a string identifying the server software

▪ Content-Type: the type of the requested object

▪ Content-Length: size of requested object

▪ Last-Modified: a date indicating the last time the request
object was modified

▪ https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

21

https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

CSE333, Autumn 2019L23: HTTP

A Real Response

22

HTTP/1.1 200 OK

Date: Mon, 21 May 2018 07:58:46 GMT

Server: Apache/2.2.32 (Unix) mod_ssl/2.2.32 OpenSSL/1.0.1e-fips

mod_pubcookie/3.3.4a mod_uwa/3.2.1 Phusion_Passenger/3.0.11

Last-Modified: Mon, 21 May 2018 07:58:05 GMT

ETag: "2299e1ef-52-56cb2a9615625"

Accept-Ranges: bytes

Content-Length: 82

Vary: Accept-Encoding,User-Agent

Connection: close

Content-Type: text/html

Set-Cookie:

bbbbbbbbbbbbbbb=DBMLFDMJCGAOILMBPIIAAIFLGBAKOJNNMCJIKKBKCDMDEJHMPONHCILPIBL

ADEAKCIABMEEPAOPMMKAOLHOKJMIGMIDKIHNCANAPHMFMBLBABPFENPDANJAPIBOIOOOD;

HttpOnly

<html><body>

Awesome!!

</body></html>

CSE333, Autumn 2019L23: HTTP

pollev.com/cse333

❖ Are the following statements True or False?

Q1 Q2

A. False False

B. False True

C. True False

D. True True

E. I’m not sure …

23

Q1: A protocol only defines the
“syntax” that clients and servers
can communicate with.

Q2: Clients and servers use the
same header fields.

CSE333, Autumn 2019L23: HTTP

Lecture Outline

❖ HTTP: Hypertext Transfer Protocol

▪ Client Requests

▪ Server Responses

❖ Advanced features and HTTP/2

24

CSE333, Autumn 2019L23: HTTP

HTTP/1.1 Feature: Chunked Transfer Encoding

❖ A server might not know how big a response object is

▪ e.g. dynamically-generated content in response to a query or
other user input

❖ How do you send Content-Length?

▪ Could wait until you’ve finished generating the response, but
that’s not great in terms of latency – we want to start sending the
response right away

❖ Chunked message body: response is a series of chunks

25

CSE333, Autumn 2019L23: HTTP

HTTP/1.1 Feature: Persistent connections

❖ Establishing a TCP connection is costly

▪ Multiple network round trips to set up the TCP connection

▪ TCP has a feature called “slow start”; slowly grows the rate at
which a TCP connection transmits to avoid overwhelming
networks

❖ A web page consists of multiple objects and a client
probably visits several pages on the same server

▪ Bad idea: separate TCP connection for each object

▪ Better idea: single TCP connection, multiple requests

26

CSE333, Autumn 2019L23: HTTP

HTTP/1.1 “Warts”

❖ World has changed since HTTP/1.1 was adopted

▪ Web pages were a few hundred KB with a few dozen objects on
each page, now several MB each with hundreds of objects (JS,
graphics, …) & multiple domains per page

▪ Much larger ecosystem of devices (phones especially)

❖ Many hacks used to increase HTTP/1.1 performance

▪ Multiple TCP sockets from browser to server

▪ Caching tricks; JS/CSS ordering and loading tricks; cookie hacks

▪ Compression/image optimizations; splitting/sharding requests

▪ etc., etc. …

27

CSE333, Autumn 2019L23: HTTP

HTTP/2 (1 of 3)

❖ All current browsers and servers “speak” HTTP/1.1

▪ Version 1.1 of the HTTP protocol

• https://www.w3.org/Protocols/rfc2616/rfc2616.html

▪ Standardized in 1997 and meant to fix shortcomings of HTTP/1.0

• Better performance, richer caching features, better support for
multihomed servers, and much more

❖ HTTP/2 standardized in 2015

▪ Doesn’t change the basic web request/response model

▪ Will coexist with HTTP/1.1 for a long time

28

https://www.w3.org/Protocols/rfc2616/rfc2616.html

CSE333, Autumn 2019L23: HTTP

HTTP/2 (2 of 3)

❖ Based on Google SPDY (2010) ; standardized in 2015

❖ Features:

▪ Same core request/response model (GET, POST, OK, …)

▪ Binary protocol

• Easier parsing by machines (harder for humans)

• Sizes in headers, not discovered as requests are processed

• Headers compressed and deduplicated by default!

▪ Multiple data steams multiplexed on single TCP connection

• Fixes “head-of-line blocking”

• With priorities on the streams!

▪ Server push and more…

29

CSE333, Autumn 2019L23: HTTP

HTTP/2 (3 of 3)

❖ Security
▪ HTTPS bolted onto HTTP in 2000 (TLS-encrypted HTTP)

▪ Most HTTP/2 servers only support TLS encryption requests

❖ Status
▪ Used now by most major web sites

▪ Coexists with HTTP/1.1

▪ HTTP/2 used automatically when browser and server both support it

❖ Flaws
▪ Standardization process was “fast”

▪ Encryption not part of the standard

▪ TCP-level head-of-line blocking

30

CSE333, Autumn 2019L23: HTTP

pollev.com/cse333

❖ Which HTTP status code family do you think the following
Reasons belong to?

Q1 Q2

A. 4xx 2xx

B. 4xx 3xx

C. 5xx 2xx

D. 5xx 3xx

E. I’m not sure …

31

Q1: Gateway Time-out

Q2: No Content

CSE333, Autumn 2019L23: HTTP

Extra Exercise #1

❖ Write a program that:

▪ Creates a listening socket that accepts connections from clients

▪ Reads a line of text from the client

▪ Parses the line of text as a DNS name

▪ Connects to that DNS name on port 80

▪ Writes a valid HTTP request for “/”

▪ Reads the reply and returns it to the client

32

GET / HTTP/1.1\r\n

Host: <DNS name>\r\n

Connection: close\r\n

\r\n

