
CSE333, Autumn 2019L21: Client Networking

Client-Side Networking
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L21: Client Networking

pollev.com/cse333

About how long did Homework 3 take?

A. 0-12 Hours
B. 13-18 Hours
C. 19-24 Hours
D. 25-30 Hours
E. 31+ Hours
F. I didn’t finish / I prefer not to say

2

CSE333, Autumn 2019L21: Client Networking

Administrivia

❖ Exercise 15 due Monday

❖ Canvas updated with late days and HW1 + HW2 grades

▪ Let Hannah know if you can’t access

❖ HW3:

▪ Extra OH tonight! 4-6pm @ 4th floor breakout

▪ 1 late day = 8:59pm tonight; 2 late days = 8:59pm on Sunday

❖ HW4 posted and files will be pushed to repos today

▪ Due last Thursday of the quarter (12/5)

▪ Only 1 late day allowed for HW4 (hard deadline of 12/6)

3

CSE333, Autumn 2019L21: Client Networking

Lecture Outline

❖ Client-side Networking

▪ Step 1: Figure out the IP/Port

• What is a Network Address?

• Data structures for address information

• DNS (Domain Name System): finding IP addresses

▪ Step 2: Create a Socket

▪ Step 3: Connect the Socket

▪ Step 4: read() and write() Data

▪ Step 5: Close the Socket

❖ HW4 demo

4

CSE333, Autumn 2019L21: Client Networking

Step 2: Creating a Socket

❖ Use the socket() system call

▪ Creating a socket doesn’t bind it to a local address or port yet

▪ Returns file descriptor or -1 on error

5

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <iostream>

int main(int argc, char **argv) {

int socket_fd = socket(AF_INET, SOCK_STREAM, 0);

if (socket_fd == -1) {

std::cerr << strerror(errno) << std::endl;

return EXIT_FAILURE;

}

close(socket_fd);

return EXIT_SUCCESS;

}

socket.cc

CSE333, Autumn 2019L21: Client Networking

Lecture Outline

❖ Client-side Networking

▪ Step 1: Figure out the IP/Port

• What is a Network Address?

• Data structures for address information

• DNS (Domain Name System): finding IP addresses

▪ Step 2: Create a Socket

▪ Step 3: Connect the Socket

▪ Step 4: read() and write() Data

▪ Step 5: Close the Socket

❖ HW4 demo

6

CSE333, Autumn 2019L21: Client Networking

Step 3: Connect to the Server

❖ The connect() system call establishes a connection to
a remote host

▪

• sockfd: Socket file description from Step 2

• addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

• Returns 0 on success and -1 on error

❖ connect() may take some time to return

▪ It is a blocking call by default

▪ The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

• This involves ~2 round trips across the network

7

int connect(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

CSE333, Autumn 2019L21: Client Networking

Connect Example

❖ See connect.cc

8

// Get an appropriate sockaddr structure.

struct sockaddr_storage addr;

size_t addrlen;

LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.

int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);

if (socket_fd == -1) {

cerr << "socket() failed: " << strerror(errno) << endl;

return EXIT_FAILURE;

}

// Connect the socket to the remote host.

int res = connect(socket_fd,

reinterpret_cast<sockaddr*>(&addr),

addrlen);

if (res == -1) {

cerr << "connect() failed: " << strerror(errno) << endl;

}

CSE333, Autumn 2019L21: Client Networking

Lecture Outline

❖ Client-side Networking

▪ Step 1: Figure out the IP/Port

• What is a Network Address?

• Data structures for address information

• DNS (Domain Name System): finding IP addresses

▪ Step 2: Create a Socket

▪ Step 3: Connect the Socket

▪ Step 4: read() and write() Data

▪ Step 5: Close the Socket

❖ HW4 demo

9

CSE333, Autumn 2019L21: Client Networking

pollev.com/cse333

❖ How do we error check read() and write()?

A. ferror()

B. Return value less than expected

C. Return value of 0 or NULL

D. Return value of -1

E. I’m not sure…

10

CSE333, Autumn 2019L21: Client Networking

Step 4: read()

❖ If there is data that has already been received by the
network stack, then read will return immediately with it
▪ read() might return with less data than you asked for

❖ If there is no data waiting for you, by default read()
will block until something arrives

▪ How might this cause deadlock?

▪ Can read() return 0?

11

CSE333, Autumn 2019L21: Client Networking

Step 4: write()

❖ write() queues your data in a send buffer in the OS
and then returns

▪ The OS transmits the data over the network in the background

▪ When write() returns, the receiver probably has not yet
received the data!

❖ If there is no more space left in the send buffer, by default
write() will block

13

CSE333, Autumn 2019L21: Client Networking

Read/Write Example

❖ See receivesend.cc

14

while (1) {

int wres = write(socket_fd, readbuf, res);

if (wres == 0) {

cerr << "socket closed prematurely" << endl;

close(socket_fd);

return EXIT_FAILURE;

}

if (wres == -1) {

if (errno == EINTR)

continue;

cerr << "socket write failure: " << strerror(errno) << endl;

close(socket_fd);

return EXIT_FAILURE;

}

break;

}

CSE333, Autumn 2019L21: Client Networking

Lecture Outline

❖ Client-side Networking

▪ Step 1: Figure out the IP/Port

• What is a Network Address?

• Data structures for address information

• DNS (Domain Name System): finding IP addresses

▪ Step 2: Create a Socket

▪ Step 3: Connect the Socket

▪ Step 4: read() and write() Data

▪ Step 5: Close the Socket

❖ HW4 demo

15

CSE333, Autumn 2019L21: Client Networking

Step 5: close()

❖

▪ Nothing special here – it’s the same function as with file I/O

▪ Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

16

int close(int fd);

CSE333, Autumn 2019L21: Client Networking

Lecture Outline

❖ Client-side Networking

▪ Roadmap

▪ Step 1: Figure out the IP/Port

• What is a Network Address?

• Data structures for address information

• DNS (Domain Name System): finding IP addresses

▪ Step 2: Create a Socket

▪ Step 3: Connect the Socket

▪ Step 4: read() and write() Data

▪ Step 5: Close the Socket

❖ HW4 demo

17

CSE333, Autumn 2019L21: Client Networking

hw4 demo

❖ Multithreaded Web Server (333gle)

▪ Don’t worry – multithreading has mostly been written for you

▪ ./http333d <port> <static files> <indices+>

▪ Some security bugs to fix, too

18

CSE333, Autumn 2019L21: Client Networking

Extra Exercise #1

❖ Write a program that:
▪ Reads DNS names, one per line, from stdin

▪ Translates each name to one or more IP addresses

▪ Prints out each IP address to stdout, one per line

19

