
CSE333, Autumn 2019L18: C++ Inheritance II, Casts

C++ Inheritance II, Casts
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

pollev.com/cse333

About how long did Exercise 14 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I prefer not to say

2

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Administrivia

❖ Quick poll: extra time for Exercise 14?

❖ Exercise 14a out today, due Friday

▪ Practice with dynamic dispatch in C++

❖ HW3 due next Thursday 😱😱😱
▪ Remember to use hw3fsck to check your index file!

3

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Dynamic Dispatch, Two Perspectives

▪ Abstract Classes

▪ Constructors and Destructors

❖ C++ Assignment, 🔪Slicing🔪, and Casts

▪ 🔪 Slicing 🔪

▪ New-style Casts

❖ Reference: C++ Primer, Chapter 15

4

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

What happens if we omit “virtual”?

❖ By default, without virtual, methods are dispatched
statically
▪ At compile time, the compiler writes in a call to the address of

the class’ method in the .text segment

• Based on the compile-time promised type of the callee

▪ This is different than Java

5

class Derived : public Base { ... };

int main(int argc, char** argv) {

Derived d;

Derived* dp = &d;

Base* bp = &d;

dp->foo();

bp->foo();

return EXIT_SUCCESS;

}

Derived::foo()

...

Base::foo()

...

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Static Dispatch Example

❖ Removed virtual on methods:

6

DividendStock dividend;

DividendStock *ds = ÷nd;

Stock *s = ÷nd;

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes Stock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.

// Stock::GetProfit() invokes Stock::GetMarketValue().

ds->GetProfit();

// invokes Stock::GetProfit().

// Stock::GetProfit() invokes Stock::GetMarketValue().

s->GetProfit();

double Stock::GetMarketValue() const;

double Stock::GetProfit() const;

Stock.h

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

▪ Control:

• If f() calls g() in class X and g is not virtual, we’re guaranteed to
call X::g() and not g() in some subclass

– Particularly useful for framework design

❖ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

❖ In C++ and C#, you can pick what you want

▪ Omitting virtual can cause obscure bugs

7

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Mixed Dispatch

❖ Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function
▪ If called on an object (e.g. obj.Fcn()), usually optimized into a

hard-coded function call at compile time

▪ If called via a pointer or reference:
PromisedT *ptr = new ActualT;

ptr->Fcn(); // which version is called?

8

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Mixed Dispatch Example

9

class A {

public:

// m1 will use static dispatch

void m1() { cout << "a1, "; }

// m2 will use dynamic dispatch

virtual void m2() { cout << "a2"; }

};

class B : public A {

public:

void m1() { cout << "b1, "; }

// m2 is still virtual by default

void m2() { cout << "b2"; }

};

void main(int argc,

char **argv) {

A a;

B b;

A *a_ptr_a = &a;

A *a_ptr_b = &b;

B *b_ptr_a = &a;

B *b_ptr_b = &b;

a_ptr_a->m1(); //

a_ptr_a->m2(); //

a_ptr_b->m1(); //

a_ptr_b->m2(); //

b_ptr_b->m1(); //

b_ptr_b->m2(); //

}

mixed.cc

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Mixed Dispatch Example

10

class A {

public:

// m1 will use static dispatch

void m1() { cout << "a1, "; }

// m2 will use dynamic dispatch

virtual void m2() { cout << "a2"; }

};

class B : public A {

public:

void m1() { cout << "b1, "; }

// m2 is still virtual by default

void m2() { cout << "b2"; }

};

void main(int argc,

char **argv) {

A a;

B b;

A *a_ptr_a = &a;

A *a_ptr_b = &b;

B *b_ptr_a = &a;

B *b_ptr_b = &b;

a_ptr_a->m1(); // a1,

a_ptr_a->m2(); // a2

a_ptr_b->m1(); // a1,

a_ptr_b->m2(); // b2

b_ptr_b->m1(); // b1,

b_ptr_b->m2(); // b2

}

mixed.cc

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

pollev.com/cse333

❖ Whose Foo() is called?

Q1 Q2

A. A A

B. A B

C. D1 A

D. D1 B

E. I’m not sure…

11

class A {

public:

void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D1 : public C {

public:

void Foo();

};

class D2 : public C {

};

void Bar() {

D1 d1;

D2 d2;

A *a_ptr = &d1;

C *c_ptr = &d2;

// Q1:

a_ptr->Foo();

// Q2:

c_ptr->Foo();

}

test.cc

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Dynamic Dispatch, Two Perspectives

▪ Abstract Classes

▪ Constructors and Destructors

❖ C++ Assignment, 🔪Slicing🔪, and Casts

▪ 🔪 Slicing 🔪

▪ New-style Casts

❖ Reference: C++ Primer, Chapter 15

12

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Review: vtable/vptr

13

Base b;

Der1 d1;

Der2 d2;

Base *bptr = &d1;

bptr->func1();

// bptr -->

// d1.vptr -->

// Der1.vtable.func1

// -->

// Base::func1()

bptr = &d2;

bptr->func1();

// bptr -->

// d2.vptr -->

// Der2.vtable.f1 -->

// Base::f1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base

func1()

func2()

Der1

func1()

func2()

Der2

func1()

func2()

Base::func1()

push %rbp

...

Base::func2()

push %rbp

...

Der1::func1()

push %rbp

...

Der2::func2()

push %rbp

...

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Two Perspectives on the Same Thing

❖ In the STL,“the spec” implies “the implementation”

▪ Eg, “fast random access” => array impl for std::vector

❖ In dynamic dispatch, “the implementation” implies “the
spec”

❖ This gives you two options for understanding dynamic
dispatch

▪ Though in both cases, you must access the object via indirection
(eg, pointer or reference)

14

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Perspective #1: Memorizing the Rules

1. virtual starts at the “highest”
point in the inheritance tree, and
applies to any of its descendents

▪ Even if you “skip a level” or omit the
virtual keyword

2. “virtualness” is decided by the
compile-time PromisedType

3. The invoked method is decided
by the runtime ActualType,
found by walking up the tree until
a method is found

15

A

/* non-virtual */

void Foo()

B

virtual void Foo()

C

/* No Foo(), but virtual */

D

/* implicitly virtual */

void Foo()

B b;

D d;

A *ap = &d; // ap->Foo(): A

B *bp = &d; // bp->Foo(): D

C *cp = &d; // cp->Foo(): D

ap = &b; // ap->Foo(): A

bp = &b; // bp->Foo(): B

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Perspective #2: Understanding the Implementation

1. Once Foo() has been declared
virtual, it will always have an
entry in its vtable and all of its
descendents’ vtables.
▪ If you “skip a level”, the address of the

parent’s entry is copied

2. The compiler decides to use the
vtable based on whether Foo()
has an entry in
PromisedType’s vtable

3. The actual method() is decided
at runtime by using the instance’s
vptr, which points to
ActualType’s vtable

16

A

void Foo() /* empty

vtable */

B

virtual void

Foo()
Foo: &B::Foo()

D

void Foo() Foo: &D::Foo()

B b;

D d;

A *ap = &d; // ap->Foo(): A

B *bp = &d; // bp->Foo(): D

C *cp = &d; // cp->Foo(): D

ap = &b; // ap->Foo(): A

bp = &b; // bp->Foo(): B

C

/* No Foo() */ Foo: &B::Foo()

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Dynamic Dispatch, Two Perspectives

▪ Abstract Classes

▪ Constructors and Destructors

❖ C++ Assignment, 🔪Slicing🔪, and Casts

▪ 🔪 Slicing 🔪

▪ New-style Casts

❖ Reference: C++ Primer, Chapter 15

17

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Abstract Classes

❖ Sometimes we want to include a function in a class but
only implement it in derived classes

▪ In Java, we would use an abstract method

▪ In C++, we use a “pure virtual” function

• Example: virtual string noise() = 0;

❖ A class containing any pure virtual methods is abstract

▪ You can’t create instances of an abstract class

▪ Extend abstract classes and override methods to use them

❖ A class containing only pure virtual methods is the same
as a Java interface

▪ Pure type specification without implementations

18

virtual string noise() = 0;

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Dynamic Dispatch, Two Perspectives

▪ Abstract Classes

▪ Constructors and Destructors

❖ C++ Assignment, 🔪Slicing🔪, and Casts

▪ 🔪 Slicing 🔪

▪ New-style Casts

❖ Reference: C++ Primer, Chapter 15

19

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Derived-Class Objects

❖ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

▪ No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

❖ Conceptual structure of DividendStock object:

20

symbol_

total_shares_

total_cost_

current_price_

dividends_

members inherited
from Stock

members defined by
DividendStock

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Initializing Sub-objects

❖ L17: “Except that constructors,
destructors, copy constructor, and
assignment operator are never
inherited”

❖ L11: “Member variables are
constructed in the order they are
defined in the class … [and] before
[the] ctor body is executed
▪ Data members that don’t appear in

the initialization list are default
initialized/constructed”

21

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Constructors and Inheritance

❖ A derived class does not inherit the base class’ ctor

▪ The derived class must have its own ctor (possibly synthesized)

❖ The base class ctor is invoked before the derived’s ctor

▪ By default, the base class’s default ctor is called

• Compiler error if the base class doesn’t have a default constructor!

▪ Use the derived class’s initialization list to specify which base class
constructor to use

❖ Then the derived class’ member variables are constructed

❖ Finally, the body of derived’s ctor is invoked

22

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Constructor Examples

23

class Base { // no default ctor

public:

Base(int yi) : y(yi) { }

int y;

};

// Compiler error when you try to

// instantiate a Der1, as the

// synthesized default ctor needs

// to invoke Base's default ctor.

class Der1 : public Base {

public:

int z;

};

class Der2 : public Base {

public:

Der2(int yi, int zi)

: Base(yi), z(zi) { }

int z;

};

badctor.cc

// has default ctor

class Base {

public:

int y;

};

// works now

class Der1 : public Base {

public:

int z;

};

// still works

class Der2 : public Base {

public:

Der2(int zi) : z(zi) { }

int z;

};

goodctor.cc

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Destructors and Inheritance

❖ Destructor of a derived
class:

▪ First runs body of the dtor

▪ Then invokes of the dtor
of the base class

❖ Static dispatch of
destructors is almost
always a mistake!

▪ Good habit to always
define a dtor as virtual

• Empty body if there’s
no work to do

24

class Base {

public:

Base() { x = new int; }

~Base() { delete x; }

int *x;

};

class Der1 : public Base {

public:

Der1() { y = new int; }

~Der1() { delete y; }

int *y;

};

void foo() {

Base *b0ptr = new Base;

Base *b1ptr = new Der1;

delete b0ptr; //

delete b1ptr; //

}

baddtor.cc

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Dynamic Dispatch, Two Perspectives

▪ Abstract Classes

▪ Constructors and Destructors

❖ C++ Assignment, 🔪Slicing🔪, and Casts

▪ 🔪 Slicing 🔪

▪ New-style Casts

25

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Assignment and Inheritance

❖ C++ allows you to assign
the value of a derived
class to an instance of
a base class

▪ Known as 🔪object slicing🔪

• It’s legal since b = d
passes type checking rules

• But b doesn’t have space
for any extra fields in d

26

class Base {

public:

Base(int xi) : x(xi) { }

int x;

};

class Der1 : public Base {

public:

Der1(int yi) : Base(16), y(yi) { }

int y;

};

void foo() {

Base b(1);

Der1 d(2);

d = b; //

b = d; //

}

slicing.cc

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

STL and Inheritance: Problem

❖ Recall: STL containers store copies of values

▪ What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

▪ You get sliced 

27

#include <list>

#include "Stock.h"

#include "DividendStock.h"

int main(int argc, char **argv) {

Stock s;

DividendStock ds;

list<Stock> li;

li.push_back(s); // OK

li.push_back(ds); // OUCH!

return EXIT_SUCCESS;

}

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

STL and Inheritance: Solution

❖ Instead, store pointers to heap-allocated objects in STL
containers

▪ No slicing! ☺

▪ sort() does the wrong thing 

▪ You have to remember to delete your objects before

destroying the container 

• Smart pointers!

28

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Dynamic Dispatch, Two Perspectives

▪ Abstract Classes

▪ Constructors and Destructors

❖ C++ Assignment, 🔪Slicing🔪, and Casts

▪ 🔪 Slicing 🔪

▪ New-style Casts

29

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Explicit Casting in C

❖ Simple syntax: lhs = (new_type) rhs;

❖ Used to:

▪ Convert between pointers of arbitrary type

• Don’t change the data, but treat differently

▪ Forcibly convert a primitive type to another

• Actually changes the representation

❖ You can still use C-style casting in C++, but sometimes the
intent is not clear

30

lhs = (new_type) rhs;

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Casting in C++

❖ C++ provides an alternative casting style that signals the
programmer’s intent explicitly:
▪ static_cast<to_type>(expression)

▪ dynamic_cast<to_type>(expression)

▪ const_cast<to_type>(expression)

▪ reinterpret_cast<to_type>(expression)

❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching

31

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

static_cast

❖ static_cast can convert:

▪ Pointers to classes of related type

• Compiler error if classes are not related

• Dangerous to cast down a class hierarchy

▪ Non-pointer conversion

• e.g. float to int

❖ static_cast is
checked at compile time

32

class A {

public:

int x;

};

class B {

public:

float x;

};

class C : public B {

public:

char x;

};

void foo() {

B b; C c;

// compiler error

A *aptr = static_cast<A*>(&b);

// OK

B *bptr = static_cast<B*>(&c);

// compiles, but dangerous

C *cptr = static_cast<C*>(&b);

}

staticcast.cc

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

dynamic_cast

❖ dynamic_cast can convert:

▪ Pointers to classes of related type

▪ References to classes of related type

❖ dynamic_cast is checked at both
compile time and
run time
▪ Casts between

unrelated classes fail
at compile time

▪ Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

33

void bar() {

Base b; Der1 d;

// OK (run-time check passes)

Base *bptr = dynamic_cast<Base*>(&d);

assert(bptr != nullptr);

// OK (run-time check passes)

Der1 *dptr = dynamic_cast<Der1*>(bptr);

assert(dptr != nullptr);

// Run-time check fails, returns nullptr

bptr = &b;

dptr = dynamic_cast<Der1*>(bptr);

assert(dptr != nullptr);

}

dynamiccast.cc
class Base {

public:

virtual void foo() { }

float x;

};

class Der1 : public Base {

public:

char x;

};

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

34

void foo(int *x) {

*x++;

}

void bar(const int *x) {

foo(x); // compiler error

foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char **argv) {

int x = 7;

bar(&x);

return EXIT_SUCCESS;

}

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

▪ e.g. storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

• This is used (carefully) in hw3

35

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Implicit Conversion

❖ The compiler tries to infer some kinds of conversions

▪ When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

36

void bar(const std::string &x);

void foo() {

int x = 5.7; // conversion, float -> int

bar("hi"); // conversion, (const char*) -> string

char c = x; // conversion, int -> char

}

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Sneaky Implicit Conversions

❖ (const char*) to string conversion?

▪ If a class has a constructor with a single parameter, the compiler
will exploit it to perform implicit conversions

▪ At most, one user-defined implicit conversion will happen

• Can do int→ Foo, but not int→ Foo→ Baz

37

class Foo {

public:

Foo(int x) : x(x) { }

int x;

};

int Bar(Foo f) {

return f.x;

}

int main(int argc, char **argv) {

return Bar(5); // equivalent to return Bar(Foo(5));

}

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Avoiding Sneaky Implicits

❖ Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path

▪ Usually a good idea

38

class Foo {

public:

explicit Foo(int x) : x(x) { }

int x;

};

int Bar(Foo f) {

return f.x;

}

int main(int argc, char **argv) {

return Bar(5); // compiler error

}

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Extra Exercise #1

❖ Design a class hierarchy to represent shapes

▪ e.g. Circle, Triangle, Square

❖ Implement methods that:

▪ Construct shapes

▪ Move a shape (i.e. add (x,y) to the shape position)

▪ Returns the centroid of the shape

▪ Returns the area of the shape

▪ Print(), which prints out the details of a shape

39

CSE333, Autumn 2019L18: C++ Inheritance II, Casts

Extra Exercise #2

❖ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

▪ Constructs a vector of shapes

▪ Sorts the vector according to the area of the shape

▪ Prints out each member of the vector

❖ Notes:

▪ Avoid slicing!

▪ Make sure the sorting works properly!

40

