YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance I, Casts

C++ Inheritance Il, Casts

CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas
Nathan Lipiarski Renshu Gu
Yibo Cao Yifan Bai

Lukas Joswiak
Travis McGaha
Yifan Xu

CSE333, Autumn 2019

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

0 Poll Everywhere pollev.com/cse333

About how long did Exercise 14 take?

A.

B. 1-2Hours

C. 2-3 Hours

D. 3-4 Hours

E. 4+ Hours

F. | prefer not to say

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

Administrivia

+ Quick poll: extra time for Exercise 14?

+ Exercise 14a out today, due Friday

" Practice with dynamic dispatch in C++

<+ HW3 due next Thursday @ @ @

= Remember to use hw3fsck to check your index file!

CSE333, Autumn 2019

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Dynamic Dispatch, Two Perspectives
= Abstract Classes

® Constructors and Destructors
2 C++ Assignment, §SIicing\, and Casts
o \ Slicing \

= New-style Casts

+ Reference: C++ Primer, Chapter 15

CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writes ina call to the address of
the class’ method in the . text segment

- Based on the compile-time promised type of the callee

= This is different than Java

[class Derived : public Base { ... };
» Derived: :foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;

Base* bp = &d;
dp->foo () ; » Base::foo()
bp->foo () ;

return EXIT SUCCESS;

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Static Dispatch Example

+» Removed virtual on methods: Stock.h

double Stock::GetMarketValue () const;
double Stock::GetProfit () const;

DividendStock dividend;
DividendStock *ds = ÷nd;
Stock *s = ÷nd;

// Invokes DividendStock::GetMarketValue ()
ds—->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s—->GetMarketValue () ;

// 1invokes Stock::GetProfit (), since that method is inherited.
// Stock::GetProfit () invokes Stock::GetMarketValue().
ds->GetProfit () ;

// invokes Stock::GetProfit ().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s—->GetProfit () ;

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Why Not Always Use virtual?

+ Two (fairly uncommon) reasons:

= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

- If £() callsg () inclass X and g is not virtual, we’re guaranteed to
call X::g () and not g () in some subclass

— Particularly useful for framework design

+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

0

+ In C++ and C#, you can pick what you want

" Omitting virtual can cause obscure bugs

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Mixed Dispatch

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g. ob7 .Fecn ()), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
PromisedT *ptr = new ActualT;
ptr->Fen(); // which version 1is called?

'

Is Fen () Yes 3 PSRl =ONTE B [FE, W Yes Dynamic dispatch of
. : marked virtual in : \
defined in P cedT or in classes it - most-derived version of
PromisedT? rom'lsel Fcn () visible to ActualT
derives from?

[e | o

Compiler Static dispatch of
Error PromisedT::Fcn()

YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance I, Casts

CSE333, Autumn 2019

Mixed Dispatch Example

mixed.cc

(class A {
public:
// ml will use static dispatch

void ml() { cout << "al, "; }
// m2 will use dynamic dispatch
virtual void m2 () { cout << "az2";
} i
class B public A {
public:
void ml() { cout << "bl, "; }

// m2 is still virtual by default
void m2 () { cout << "b2"; }

b g

\.

}

N\

(. E .)
vold main (int argc,
char **argv) {
A a;
B b;
A *a ptr a = é&a;
A *a ptr b = &b;
B *b ptr a = &a;
B *b ptr b = &b;
a ptr a->ml(); //
a ptr a->m2(); //
a ptr b->ml(); //
a ptr b->m2(); //
b ptr b->ml(); //
b ptr b->m2(); //
\. } J/

YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance I, Casts

Mixed Dispatch Example

mixed.cc

N\

(class A {
public:
// ml will use static dispatch
void ml() { cout << "al, }
// m2 will use dynamic dispatch
virtual void m2() { cout << "a2";

"w .
4

}
¥

class B public A {
public:
void ml() { cout << "bl, "; }

// m2 is still virtual by default
void m2 () { cout << "b2"; }

b g

\.

CSE333, Autumn 2019

(\ . .)
vold main (int argc,
char **argv) {

A a;

B b;

A *a ptr a = é&a;

A *a ptr b = &b;

Dkl At S [

1J J\J_t/L,L_L/L oAy

B *b ptr b = &b;

a ptr a->ml(); // al,

a ptr a->m2(); // a2

a ptr b->ml(); // al,

a ptr b->m2(); // b2

b ptr b->ml(); // bl,

b ptr b->m2(); // b2
\} J

10

YA UNIVERSITY of WASHINGTON

L18: C++ Inheritance I, Casts

0 Poll Everywhere

+» Whose Foo () is called?

m O

Q1 Q2

A B
D1 A
D1 B

I’m not sure...

/

P

/%\
[

/
C

«
D¢

\

}

[void Bar () {

D1 di;
D2 d2;
A *a ptr = &dl;
C *c _ptr = &d2;
// Q1:

a ptr->Foo () ;

S/ Q2:
Cc_ptr->Foo();

CSE333, Autumn 2019

pollev.com/cse333

test.cc
class A {
public:
void Foo () ;
} i
.class B : public A {
public:

virtual void Foo() ;

b g

class C : public B {
I

class D1 : public C {
public:

void Foo () ;

b g

class D2 : public C {

b g

11

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Dynamic Dispatch, Two Perspectives
= Abstract Classes
= Constructors and Destructors

2 C++ Assignment, §SIicing\, and Casts
o \ Slicing \

= New-style Casts

+ Reference: C++ Primer, Chapter 15

12

YA UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

Review: vtable/vptr

object class compiled
instances vtables code

Base: : funcl ()
push Srbp

b|vptr @=

Base: : func2 ()
push S%rbp

dl | vptr @=

Derl: : funcl ()
push Srbp

Der2: : func2 ()

d2 | vptr €= push %$rbp

CSE333, Autumn 2019

(Base b;
Derl dl;
Der2 d2;

Base *bptr = &dl;

bptr->funcl () ;

// bptr —-->

// dl.vptr —-->

// Derl.vtable. funcl
// -=>

// Base::funcl ()

bptr = &d2;

bptr->funcl () ;

// bptr —-->

// d2.vptr —-->

// Der2.vtable.fl —-->
// Base::fl()

13

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Two Perspectives on the Same Thing

» In the STL,“the spec” implies “the implementation”

= Eg, “fast random access” => array impl for std::vector

+ In dynamic dispatch, “the implementation” implies “the
spec”

+ This gives you two options for understanding dynamic
dispatch

" Though in both cases, you must access the object via indirection
(eg, pointer or reference)

14

YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance I, Casts

CSE333, Autumn

Perspective #1: Memorizing the Rules

1. virtual starts at the “highest”
point in the inheritance tree, and
applies to any of its descendents

III

= Even if you “skip a level” or omit the

virtual keyword

2. “virtualness” is decided by the
compile-time PromisedType

3. The invoked method is decided
by the runtime ActualType,
found by walking up the tree until
a method is found

/* non-virtual */
volid Foo ()

virtual void Foo ()

/* No Foo (), but virtual */

/* implicitly virtual */
void Foo ()

B b;

D d;

A *ap = &d; // ap->Foo(): A
B *bp = &d; // bp->Foo(): D
C *cp = &d; // cp->Foo(): D
ap = &b; // ap->Foo(): A
bp = &b; // bp->Foo () : B

2019

15

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Perspective #2: Understanding the Implementation

1. Once Foo () has been declared void Foo () /* empty
virtual, it will always have an vtable */
entry in its vtable and all of its
descendents’ vtables. , ,

virtual void

= |fyou “skip a level”, the address of the Foo () Foo: &B::Foo ()
parent’s entry is copied

2. The compiler decides to use the /* No Foo() */ : &B::Foo ()
vtable based on whether Foo ()
has an entry in
PromisedType’s vtable

volid Foo () Foo: &D::Foo ()

b;
3. Theactualmethod () is decided 4

B

D

at runtime by using the instance’s A *ap = &d; // ap->Foo () :

vptr, which points to B *bp = &d; // bp->Foo():
C

ActualType’s vtable *cp = &d; // cp->Foo():
ap = &b; // ap->Foo () :

bp = &b; // bp->Foo () :

> O O

16

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Dynamic Dispatch, Two Perspectives
= Abstract Classes
= Constructors and Destructors

2 C++ Assignment, §SIicing\, and Casts
o \ Slicing \

= New-style Casts

+ Reference: C++ Primer, Chapter 15

17

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Abstract Classes

+~ Sometimes we want to include a function in a class but
only implement it in derived classes
" |n Java, we would use an abstract method
" |n C++, we use a “pure virtual” function
- Example: [virtual string noise() = 0;

+ A class containing any pure virtual methods is abstract

" You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface

" Pure type specification without implementations

18

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Dynamic Dispatch, Two Perspectives
= Abstract Classes

= Constructors and Destructors
2 C++ Assignment, §SIicing\, and Casts
o \ Slicing \

= New-style Casts

+ Reference: C++ Primer, Chapter 15

19

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Derived-Class Objects

+ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

+» Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by
DividendStock

dividends

20

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

CSE333, Autumn 2019

Initializing Sub-objects

« L17: “Except that constructors,
destructors, copy constructor, and
assignment operator are never
inherited”

« L11: “Member variables are
constructed in the order they are
defined in the class ... [and] before
[the] ctor body is executed

= Data members that don’t appear in
the initialization list are default
initialized/constructed”

Class Derivation List

« Comma-separated list of classes to inherit from:

finclude "BageClass.h"

® Focus on single inheritance, but multiple inheritance possible

« Almost always you will want public inheritance
= Acts like extends does in Java
= Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

+ Except that constructors, destructors, copy constructor, and
assignment operator are never inherited

Initialization vs. Construction

Point3D
I First, initialization list is applied.

// constructor with 3 int guments
Poin int x, int y, int z:

} ‘\ Next, constructor body is executed.

® Member variables are constructed in the order they are defined in
the class, not by the initialization list ordering (!)
- Member construction always happens before ctor body is executed

- Data members that don’t appear in the initialization list are default
initialized/constructed

® |nitialization preferred to assignment to avoid extra steps
+ Real code should never mix the two styles

21

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Constructors and Inheritance

L)

>

A derived class does not inherit the base class’ ctor

" The derived class must have its own ctor (possibly synthesized)

L0

L)

0’0

The base class ctor is invoked before the derived’s ctor

= By default, the base class’s default ctor is called

- Compiler error if the base class doesn’t have a default constructor!

= Use the derived class’s initialization list to specify which base class
constructor to use

« Then the derived class’ member variables are constructed

*

Finally, the body of derived’s ctor is invoked

D)

€

22

YW UNIVERSITY of WASHINGTON

Constructor Examples

badctor.cc

L18: C++ Inheritance I, Casts

goodctor.cc

class Base { // no default ctor
public:
Base (int vyi)
int y;

b g

y(yi) { }

// Compiler error when you try to
// 1lnstantiate a Derl, as the
// synthesized default ctor needs
// to invoke Base's default ctor.
class Derl public Base {
public:

int z;

1

class Der? public Base {
public:
Der2 (int yi,
Base (yi),
int z;

I g

int zi)

z(z1) { }

.

(// has default ctor
class Base {
public:

int y;
} i

// works now
class Derl
public:

int z;

b g

public Base

// still works
class Der?2 public Base
public:
Der?2 (int z1i)
int z;

z(z1) |

b g

\.

N\

CSE333, Autumn 2019

23

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Destructors and Inheritance

baddtor.cc
« Destructor of a derived (class Base {)
I i public:
Class: Base() { x = new int; }
" First runs body of the dtor TB‘ES@() (eie te By i
int *x;
= Then invokes of the dtor };
of the base class class Derl : public Base {
public:
.] Derl() { y = new 1nt; }
< Static d|SpatCh Of ~Derl () { delete y; }
destructors is almost T
I |
always a mistake! void foo() |
= Good habit to always Boize molpte = sew Ease)
define a dtor as virtual SRS MolpiE = e eEly
)) , delete bOptr; //
Empty body if there’s delote blptr: /7
no work to do |
_)

24

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Dynamic Dispatch, Two Perspectives
= Abstract Classes
= Constructors and Destructors

2 C++ Assignment, §SIicing\, and Casts
= \ Slicing \

= New-style Casts

25

YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance I, Casts

Assignment and Inheritance

+» C++ allows you to assign
the value of a derived
class to an instance of
a base class
= Known as \object incing\
- It'slegal sinceb = d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

slicing.cc

CSE333, Autumn 2019

(class Base {

public:
Base (1nt
int x;

b g

class Derl
public:
Derl (1int
int y;
i

void foo () {
Base b (1) ;
Derl d(2);
d = b;

//
b =4d; //

}

\.

xX1)

yi)

o x(x1) { }

: public Base {

: Base (16), y(yi) { }

\

26

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

STL and Inheritance: Problem

+ Recall: STL containers store copies of values

= What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

" You get sliced ®

#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char **argv) {
Stock s;
DividendStock ds;
list<Stock> 1i;

1i.push back (s); // OK
li.push back(ds); // OUCH!

return EXIT SUCCESS;

27

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

STL and Inheritance: Solution

+ Instead, store pointers to heap-allocated objects in STL
containers
= No slicing! ©
" sort () doesthe wrong thing ®

" You have to remember to de 1l et e your objects before
destroying the container ®
- Smart pointers!

28

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Dynamic Dispatch, Two Perspectives
= Abstract Classes
= Constructors and Destructors

2 C++ Assignment, §SIicing\, and Casts
o \ Slicing \

= New-style Casts

29

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Explicit Casting in C

= Simple syntax:| 1hs = (new type) rhs;
+» Used to:

= Convert between pointers of arbitrary type

- Don’t change the data, but treat differently

" Forcibly convert a primitive type to another
- Actually changes the representation

+ You can still use C-style casting in C++, but sometimes the
intent is not clear

30

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Casting in C++

+» C++ provides an alternative casting style that signals the
programmer’s intent explicitly:
" statlc cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)

+ Always use these in C++ code
" |ntent is clearer

= Easier to find in code via searching

31

YW UNIVERSITY of WASHINGTON

L18: C++ Inherita

static_cast

statlc cast can convert:

" Pointers to classes of related ty
- Compiler error if classes are not

- Dangerous to cast down a class hierarchy

" Non-pointer conversion
- e.g. floattoint

nce ll, Casts

staticcast.cc

CSE333, Autumn 2019

rClass A {
public:
int x;

b

class B {

e public:
related float x;
} i
class C
public:
char x;

b g

\

: public B {

static castis
checked at compile time

VO

}

id foo ()
B b; C c;

{

// compiler error

A *aptr = static cast<A*>(&b);
// OK
B *bptr = static cast<B*>(&c);

// compiles, but dangerous
C *cptr

static cast<C*>(&b) ;

YW UNIVERSITY of WASHINGTON

dynamic cast

\/
0‘0

dynamilc cast can convert:

= Pointers to classes of related type
= References to classes of related type

+ dynamic cast ischecked at both

L18: C++ Inheritance I, Casts

CSE333, Autumn 2019

dynamiccast.cc

class Base {

public:
virtual void f£foo ()
float x;

{}

b g

class Derl
public:
char x;

public Base {

b g

compile time and
run time

{

Der

[void bar ()
Rase b;

= Casts between
unrelated classes fail
at compile time

Base *bptr
assert (bptr

Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

Derl *dptr
assert (dptr

// Run-time
bptr &b;

dptr
assert (dptr

// OK (run-

// OK (run-

1 d;

time check passes)
dynamic cast<Base*> (&d);
!= nullptr);

time check passes)
dynamic cast<Derl*> (bptr);
!= nullptr);

check fails, returns nullptr

dynamic cast<Derl*> (bptr);

!= nullptr);

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

const_cast

+ const cast adds or strips const-ness

= Dangerous (!)

[void foo(int *x) {
*x++;
}

volid bar (const int *x)
foo (x);

}

int main(int argc,
int x = 7;
bar (&x) ;

return EXIT SUCCESS;

foo(const cast<int*>(x

{

// compiler error
// succeeds

)) s

char **argv) {

CSE333, Autumn 2019

34

YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance I, Casts

CSE333, Autumn 2019

relnterpret cast
+ reinterpret cast casts betweenincompatible types
= |Low-level reinterpretation of the bit pattern
" e.g. storing a pointerin an int, or vice-versa
- Works as long as the integral type is “wide” enough

" Converting between incompatible pointers
- Dangerous (!)

« This is used (carefully) in hw3

35

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Implicit Conversion

+» The compiler tries to infer some kinds of conversions

" When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

[void bar (const std::string &x);

volid foo () {
int x = 5.7; // conversion, float -> 1int
bar ("hi") ; // conversion, (const char*) -> string
char ¢ = x; // conversion, 1int -> char

36

L18: C++ Inheritance I, Casts CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON

Sneaky Implicit Conversions

%+ (const char*)to string conversion?

= |f a class has a constructor with a single parameter, the compiler
will exploit it to perform implicit conversions

= At most, one user-defined implicit conversion will happen
- Cando int —» Foo, butnot int - Foo - Baz

class Foo {

public:
Foo(int x)
int x;

b g

o x(x) { }

int Bar (Foo f) {
return f.x;

}

int main(int argc,
return Bar (5);

}

char **argv) {
// equivalent to return Bar (Foo(5));

37

YW UNIVERSITY of WASHINGTON

Avoiding Sneaky Implicits

Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit

conversion path

= Usually a good idea

rclass Foo {

public:
explicit Foo(int x) : x(x) {
int x;

b g

int Bar (Foo f) {
return f.x;

}

int main(int argc, char **argv)

L18: C++ Inheritance I, Casts CSE333, Autumn 2019

return Bar(5); // compiler error

}

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

Extra Exercise #1

» Design a class hierarchy to represent shapes
= e.g. Circle, Triangle, Square

» Implement methods that:
" Construct shapes
= Move a shape (i.e. add (x,y) to the shape position)
= Returns the centroid of the shape
= Returns the area of the shape
" Print (), which prints out the details of a shape

CSE333, Autumn 2019

39

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Autumn 2019

Extra Exercise #2

+ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

= Constructs a vector of shapes
= Sorts the vector according to the area of the shape
" Prints out each member of the vector

«» Notes:
= Avoid slicing!
" Make sure the sorting works properly!

40

