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About how long did Exercise 12a take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I’m not done yet / I prefer not to say
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Administrivia

❖ Exercise 13 (Skip List) extended until tomorrow

❖ Exercise 14 (Inheritance) still assigned for today, due Wed

❖ Midterm: Scores/feedback published

▪ Some statistics:

• Mean: 79% (89 pts), Standard Deviation: 12% (13 pts)

▪ Regrade Requests open today

• Submit regrades for individual parts, after looking at sample solution!

▪ Remember! The midterm is a tool to check your understanding, 
NOT an indicator of your ability to do systems programming!

• Midterm: 15% of final grade (Final: 20%, EX + HW: 60%)
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Lecture Outline

❖ Midterm Misunderstandings

❖ C++ Inheritance

▪ Review of basic idea

▪ Dynamic Dispatch, Conceptually

▪ Dynamic Dispatch, Implementation: vtables and vptr
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Midterm Misunderstandings

❖ T *contents_ vs T* contents_[64]

❖ Deep copies!
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Lecture Outline

❖ Midterm Misunderstandings

❖ C++ Inheritance

▪ Review of basic idea

▪ Dynamic Dispatch, Conceptually

▪ Dynamic Dispatch, Implementation: vtables and vptr
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Stock Portfolio Example

❖ A portfolio represents a person’s investments

▪ Each asset has a cost (i.e. how much was paid for it) and a market 
value (i.e. how much it is worth)

• The difference between the cost and market value is the profit (or 
loss)

▪ Different assets compute market value in different ways

• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of 
shares, share price paid, and current share price

• A dividend stock is a stock that also has dividend payments, which 
contributes to your profit

• Cash is an asset that never incurs a profit or loss

8(Credit:  thanks to Marty Stepp for this example)
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Design Without Inheritance

❖ One class per asset type:

▪ Redundant!

▪ Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

❖ See sample code: initial/

9

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()
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Inheritance

❖ An “is-a” relationship: a child “is-a” parent

▪ A child (derived class) extends a parent (base class)

❖ Terminology:

▪ Mean the same things.  You’ll hear both.
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Java C++

Superclass Base Class

Subclass Derived Class
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Inheritance

❖ An “is-a” relationship: a child “is-a” parent

▪ A child (derived class) extends a parent (base class)

❖ Benefits:

▪ Code reuse

• Children can automatically inherit code from parents

▪ Polymorphism

• Ability to redefine existing behavior but preserve the interface

• Children can override the behavior of the parent

• Others can make calls on objects without knowing which part of the 
inheritance tree it is in

▪ Extensibility

• Children can add behavior

11
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Design With Inheritance

12

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

Asset (abstract)

GetMarketValue()

GetProfit()

GetCost()

See sample code: inherit/
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Like Java:  Access Modifiers

❖ public: visible to all other classes

❖ protected: visible to current class and its derived
classes

❖ private: visible only to the current class

❖ Use protected for class members only when

▪ Class is designed to be extended by subclasses

▪ Subclasses must have access but clients should not be allowed
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Class Derivation List

❖ Comma-separated list of classes to inherit from:

▪ Focus on single inheritance, but multiple inheritance possible

❖ Almost always you will want public inheritance
▪ Acts like extends does in Java

▪ Any member that is non-private in the base class is the same in 
the derived class; both interface and implementation inheritance

• Except that constructors, destructors, copy constructor, and 
assignment operator are never inherited

14

#include "BaseClass.h"

class Name : public BaseClass {

...

};
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Back to Stocks

BASE DERIVED

15

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()
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Polymorphism in C++

❖ In Java:  PromisedType var = new ActualType();

▪ var is a reference (different term than C++ reference) to an 
object of ActualType on the Heap

▪ ActualType must be the same class or a subclass of 
PromisedType

❖ In C++:  PromisedType *var_p = new ActualType();

▪ var_p is a pointer to an object of ActualType on the Heap

▪ ActualType must be the same or a derived class of 
PromisedType

▪ (also works with references)

▪ PromisedType defines the interface (i.e. what can be called on 
var_p), but ActualType may determine which version gets 
invoked
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Back to Stocks

❖ A derived class:

▪ Inherits the behavior and state (specification) of the base class

▪ Overrides some of the base class’ member functions (opt.)

▪ Extends the base class with new member functions, variables 
(opt.)
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Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

dividends_

GetMarketValue()

GetProfit()

GetCost()

PayDividend()

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()
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Lecture Outline

❖ Midterm Misunderstandings

❖ C++ Inheritance

▪ Review of basic idea

▪ Dynamic Dispatch, Conceptually

▪ Dynamic Dispatch, Implementation: vtables and vptr
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Most-Derived
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class A {

public:

// Foo will use dynamic dispatch

virtual void Foo();

};

class B : public A {

public:

// B::Foo overrides A::Foo

virtual void Foo();

};

class C : public B {

// C inherits B::Foo()

};

void Bar() {

A *a_ptr;

C c;

a_ptr = &c;

// Whose Foo() is called?

a_ptr->Foo();

}
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Dynamic Dispatch (similarities to Java)

❖ Usually, when a derived function is available for an object, 
we want the derived function to be invoked

▪ This requires a run time decision of what code to invoke

❖ A member function invoked on an object should be the 
most-derived function accessible to the object’s visible 
type

▪ Can determine what to invoke from the object itself

❖ Example:  
▪ void PrintStock(Stock *s) { s->Print(); }

▪ Calls the appropriate Print() without knowing the actual type 
of *s, other than it is some sort of Stock

20
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Dynamic Dispatch (C++-specific)

❖ Prefix the “highest” member function declaration with the 
virtual keyword

▪ This is how method calls work in Java (no virtual keyword needed)

▪ Derived/child functions will be “virtual”, so repeating virtual
declaration is technically optional

• Traditionally good style to do so!

❖ Derived/child functions should use override

▪ Tells compiler this method should be overriding an inherited 
virtual function – always use if available (added in C++11)

▪ Prevents overloading vs. overriding bugs

21
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Dynamic Dispatch Example

❖ When a member function is invoked on an object:

▪ The most-derived function accessible to the object’s visible type is 
invoked (decided at run time based on actual type of the object)

22

double DividendStock::GetMarketValue() const {

return get_shares() * get_share_price() + dividends_;

}

double "DividendStock"::GetProfit() const {  // not actually here; 

return GetMarketValue() – GetCost();       // inherited from Stock

}

double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

}

DividendStock.cc

Stock.cc
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Dynamic Dispatch Example
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#include "Stock.h"

#include "DividendStock.h"

DividendStock dividend;

DividendStock *s = &dividend;

Stock *s = &dividend;   // why is this allowed?

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.  

// Stock::GetProfit() invokes DividendStock::GetMarketValue(), 

// since that is the most-derived accessible function.

s->GetProfit();
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pollev.com/cse333

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D2

C. B B

D. B D2

E. I’m not sure…
24

class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D1 : public C {

public:

virtual void Foo();

};

class D2 : public C {

};

void Bar() {

A *a_ptr;

// Q1:

a_ptr = new C;

a_ptr->Foo();

// Q2: 

a_ptr = new E;

a_ptr->Foo();

}
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virtual is “sticky”

❖ If X::f() is declared virtual, then a vtable will be 
created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) f

❖ f() will be called using dynamic dispatch even if 
overridden in a derived class without the virtual
keyword
▪ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use 
virtual in derived classes?  Recent style guides say just use 
override, but you’ll sometimes see both, particularly in older code
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Lecture Outline

❖ Midterm Misunderstandings

❖ C++ Inheritance

▪ Review of Basic Idea

▪ Dynamic Dispatch, Conceptually

▪ Dynamic Dispatch, Implementation: vtables and vptr
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How Can This Possibly Work?

❖ The compiler produces Stock.o from just Stock.cc

▪ It doesn’t know that DividendStock exists during this process

▪ So then how does the emitted code know to call 
Stock::GetMarketValue() or 
DividendStock::GetMarketValue()

or something else that might not exist yet?

• Function pointers!!!
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double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

} Stock.cc

virtual double Stock::GetMarketValue() const;

virtual double Stock::GetProfit() const;

Stock.h
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vtables and the vptr

❖ If a class contains any virtual methods, the compiler 
emits:

▪ A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class

• The pointers in the vtable point to the most-derived function for that 
class

▪ A virtual table pointer (vptr) for each object instance

• A pointer to a virtual table as a “hidden” member variable

• When the object’s constructor is invoked, the vptr is initialized to 
point to the vtable for the object’s class

• Thus, the vptr “remembers” what class the object is

28
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code for Stock ctor

code for Stock’s GetMarketValue()
Stock vtable: 

xvtable ptr yheader

Stock object

p    ???

351 Throwback: Dynamic Dispatch
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Stock s = ???;

return s.GetMarketValue();

// works regardless of what s is

return s->vtable[1](s);

Java: C pseudo-translation:

code for DividendStock’s GetMarketValue()

code for GetDividend()

xvtable yheader

DividendStock object

z

DividendStock

vtable:
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vtable/vptr Example
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class Base {

public:

virtual void func1();

virtual void func2();

};

class Der1 : public Base {

public:

virtual void func1();

};

class Der2 : public Base {

public:

virtual void func2();

};

Base b;

Der1 d1;

Der2 d2;

Base *b0ptr = &b;

Base *b1ptr = &d1;

Base *b2ptr = &d2;

b0ptr->func1();  //

b0ptr->func2();  //

b1ptr->func1();  //

b1ptr->func2();  //

d2.func1();      //

b2ptr->func1();  //

b2ptr->func2();  //
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vtable/vptr Example
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class Base {

public:

virtual void func1();

virtual void func2();

};

class Der1 : public Base {

public:

virtual void func1();

};

class Der2 : public Base {

public:

virtual void func2();

};

Base b;

Der1 d1;

Der2 d2;

Base *b0ptr = &b;

Base *b1ptr = &d1;

Base *b2ptr = &d2;

b0ptr->func1();  //

b0ptr->func2();  //

b1ptr->func1();  //

b1ptr->func2();  //

d2.func1();      //

b2ptr->func1();  //

b2ptr->func2();  //
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vtable/vptr Example
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Base b;

Der1 d1;

Der2 d2;

Base *bptr = &d1;

bptr->func1();

// bptr -->

// d1.vptr -->

// Der1.vtable.func1

//   -->

// Base::func1()

bptr = &d2;

bptr->func1();

// bptr -->

// d2.vptr -->

// Der2.vtable.f1 -->

// Base::f1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base

func1()

func2()

Der1

func1()

func2()

Der2

func1()

func2()

Base::func1()

push %rbp

...

Base::func2()

push %rbp

...

Der1::func1()

push %rbp

...

Der2::func2()

push %rbp

...
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Let’s Look at Some Actual Code

❖ Let’s examine the following code using objdump

▪ g++ -Wall –g –std=c++11 -o vtable vtable.cc

▪ objdump -CDS vtable > vtable.d
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class Base {

public:

virtual void func1();

virtual void func2();

};

class Der1 : public Base {

public:

virtual void func1();

};

int main(int argc, char **argv) {

Der1 d1;

d1.func1();

Base *bptr = &d1; 

bptr->func1();

}

vtable.cc


