
CSE333, Autumn 2019L17: C++ Inheritance I

C++ Inheritance I
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L17: C++ Inheritance I

pollev.com/cse333

About how long did Exercise 12a take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I’m not done yet / I prefer not to say

2

CSE333, Autumn 2019L17: C++ Inheritance I

Administrivia

❖ Exercise 13 (Skip List) extended until tomorrow

❖ Exercise 14 (Inheritance) still assigned for today, due Wed

❖ Midterm: Scores/feedback published

▪ Some statistics:

• Mean: 79% (89 pts), Standard Deviation: 12% (13 pts)

▪ Regrade Requests open today

• Submit regrades for individual parts, after looking at sample solution!

▪ Remember! The midterm is a tool to check your understanding,
NOT an indicator of your ability to do systems programming!

• Midterm: 15% of final grade (Final: 20%, EX + HW: 60%)

3

CSE333, Autumn 2019L17: C++ Inheritance I

Lecture Outline

❖ Midterm Misunderstandings

❖ C++ Inheritance

▪ Review of basic idea

▪ Dynamic Dispatch, Conceptually

▪ Dynamic Dispatch, Implementation: vtables and vptr

4

CSE333, Autumn 2019L17: C++ Inheritance I

Midterm Misunderstandings

❖ T *contents_ vs T* contents_[64]

❖ Deep copies!

5

CSE333, Autumn 2019L17: C++ Inheritance I

Lecture Outline

❖ Midterm Misunderstandings

❖ C++ Inheritance

▪ Review of basic idea

▪ Dynamic Dispatch, Conceptually

▪ Dynamic Dispatch, Implementation: vtables and vptr

7

CSE333, Autumn 2019L17: C++ Inheritance I

Stock Portfolio Example

❖ A portfolio represents a person’s investments

▪ Each asset has a cost (i.e. how much was paid for it) and a market
value (i.e. how much it is worth)

• The difference between the cost and market value is the profit (or
loss)

▪ Different assets compute market value in different ways

• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

• A dividend stock is a stock that also has dividend payments, which
contributes to your profit

• Cash is an asset that never incurs a profit or loss

8(Credit: thanks to Marty Stepp for this example)

CSE333, Autumn 2019L17: C++ Inheritance I

Design Without Inheritance

❖ One class per asset type:

▪ Redundant!

▪ Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

❖ See sample code: initial/

9

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

CSE333, Autumn 2019L17: C++ Inheritance I

Inheritance

❖ An “is-a” relationship: a child “is-a” parent

▪ A child (derived class) extends a parent (base class)

❖ Terminology:

▪ Mean the same things. You’ll hear both.

10

Java C++

Superclass Base Class

Subclass Derived Class

CSE333, Autumn 2019L17: C++ Inheritance I

Inheritance

❖ An “is-a” relationship: a child “is-a” parent

▪ A child (derived class) extends a parent (base class)

❖ Benefits:

▪ Code reuse

• Children can automatically inherit code from parents

▪ Polymorphism

• Ability to redefine existing behavior but preserve the interface

• Children can override the behavior of the parent

• Others can make calls on objects without knowing which part of the
inheritance tree it is in

▪ Extensibility

• Children can add behavior

11

CSE333, Autumn 2019L17: C++ Inheritance I

Design With Inheritance

12

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

Asset (abstract)

GetMarketValue()

GetProfit()

GetCost()

See sample code: inherit/

CSE333, Autumn 2019L17: C++ Inheritance I

Like Java: Access Modifiers

❖ public: visible to all other classes

❖ protected: visible to current class and its derived
classes

❖ private: visible only to the current class

❖ Use protected for class members only when

▪ Class is designed to be extended by subclasses

▪ Subclasses must have access but clients should not be allowed

13

CSE333, Autumn 2019L17: C++ Inheritance I

Class Derivation List

❖ Comma-separated list of classes to inherit from:

▪ Focus on single inheritance, but multiple inheritance possible

❖ Almost always you will want public inheritance
▪ Acts like extends does in Java

▪ Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

• Except that constructors, destructors, copy constructor, and
assignment operator are never inherited

14

#include "BaseClass.h"

class Name : public BaseClass {

...

};

CSE333, Autumn 2019L17: C++ Inheritance I

Back to Stocks

BASE DERIVED

15

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

CSE333, Autumn 2019L17: C++ Inheritance I

Polymorphism in C++

❖ In Java: PromisedType var = new ActualType();

▪ var is a reference (different term than C++ reference) to an
object of ActualType on the Heap

▪ ActualType must be the same class or a subclass of
PromisedType

❖ In C++: PromisedType *var_p = new ActualType();

▪ var_p is a pointer to an object of ActualType on the Heap

▪ ActualType must be the same or a derived class of
PromisedType

▪ (also works with references)

▪ PromisedType defines the interface (i.e. what can be called on
var_p), but ActualType may determine which version gets
invoked

16

CSE333, Autumn 2019L17: C++ Inheritance I

Back to Stocks

❖ A derived class:

▪ Inherits the behavior and state (specification) of the base class

▪ Overrides some of the base class’ member functions (opt.)

▪ Extends the base class with new member functions, variables
(opt.)

17

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

dividends_

GetMarketValue()

GetProfit()

GetCost()

PayDividend()

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

CSE333, Autumn 2019L17: C++ Inheritance I

Lecture Outline

❖ Midterm Misunderstandings

❖ C++ Inheritance

▪ Review of basic idea

▪ Dynamic Dispatch, Conceptually

▪ Dynamic Dispatch, Implementation: vtables and vptr

18

CSE333, Autumn 2019L17: C++ Inheritance I

Most-Derived

19

class A {

public:

// Foo will use dynamic dispatch

virtual void Foo();

};

class B : public A {

public:

// B::Foo overrides A::Foo

virtual void Foo();

};

class C : public B {

// C inherits B::Foo()

};

void Bar() {

A *a_ptr;

C c;

a_ptr = &c;

// Whose Foo() is called?

a_ptr->Foo();

}

CSE333, Autumn 2019L17: C++ Inheritance I

Dynamic Dispatch (similarities to Java)

❖ Usually, when a derived function is available for an object,
we want the derived function to be invoked

▪ This requires a run time decision of what code to invoke

❖ A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type

▪ Can determine what to invoke from the object itself

❖ Example:
▪ void PrintStock(Stock *s) { s->Print(); }

▪ Calls the appropriate Print() without knowing the actual type
of *s, other than it is some sort of Stock

20

CSE333, Autumn 2019L17: C++ Inheritance I

Dynamic Dispatch (C++-specific)

❖ Prefix the “highest” member function declaration with the
virtual keyword

▪ This is how method calls work in Java (no virtual keyword needed)

▪ Derived/child functions will be “virtual”, so repeating virtual
declaration is technically optional

• Traditionally good style to do so!

❖ Derived/child functions should use override

▪ Tells compiler this method should be overriding an inherited
virtual function – always use if available (added in C++11)

▪ Prevents overloading vs. overriding bugs

21

CSE333, Autumn 2019L17: C++ Inheritance I

Dynamic Dispatch Example

❖ When a member function is invoked on an object:

▪ The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

22

double DividendStock::GetMarketValue() const {

return get_shares() * get_share_price() + dividends_;

}

double "DividendStock"::GetProfit() const { // not actually here;

return GetMarketValue() – GetCost(); // inherited from Stock

}

double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

}

DividendStock.cc

Stock.cc

CSE333, Autumn 2019L17: C++ Inheritance I

Dynamic Dispatch Example

23

#include "Stock.h"

#include "DividendStock.h"

DividendStock dividend;

DividendStock *s = ÷nd;

Stock *s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.

// Stock::GetProfit() invokes DividendStock::GetMarketValue(),

// since that is the most-derived accessible function.

s->GetProfit();

CSE333, Autumn 2019L17: C++ Inheritance I

pollev.com/cse333

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D2

C. B B

D. B D2

E. I’m not sure…
24

class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D1 : public C {

public:

virtual void Foo();

};

class D2 : public C {

};

void Bar() {

A *a_ptr;

// Q1:

a_ptr = new C;

a_ptr->Foo();

// Q2:

a_ptr = new E;

a_ptr->Foo();

}

CSE333, Autumn 2019L17: C++ Inheritance I

virtual is “sticky”

❖ If X::f() is declared virtual, then a vtable will be
created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) f

❖ f() will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword
▪ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code

25

CSE333, Autumn 2019L17: C++ Inheritance I

Lecture Outline

❖ Midterm Misunderstandings

❖ C++ Inheritance

▪ Review of Basic Idea

▪ Dynamic Dispatch, Conceptually

▪ Dynamic Dispatch, Implementation: vtables and vptr

26

CSE333, Autumn 2019L17: C++ Inheritance I

How Can This Possibly Work?

❖ The compiler produces Stock.o from just Stock.cc

▪ It doesn’t know that DividendStock exists during this process

▪ So then how does the emitted code know to call
Stock::GetMarketValue() or
DividendStock::GetMarketValue()

or something else that might not exist yet?

• Function pointers!!!

27

double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

} Stock.cc

virtual double Stock::GetMarketValue() const;

virtual double Stock::GetProfit() const;

Stock.h

CSE333, Autumn 2019L17: C++ Inheritance I

vtables and the vptr

❖ If a class contains any virtual methods, the compiler
emits:

▪ A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class

• The pointers in the vtable point to the most-derived function for that
class

▪ A virtual table pointer (vptr) for each object instance

• A pointer to a virtual table as a “hidden” member variable

• When the object’s constructor is invoked, the vptr is initialized to
point to the vtable for the object’s class

• Thus, the vptr “remembers” what class the object is

28

CSE333, Autumn 2019L17: C++ Inheritance I

code for Stock ctor

code for Stock’s GetMarketValue()
Stock vtable:

xvtable ptr yheader

Stock object

p ???

351 Throwback: Dynamic Dispatch

29

Stock s = ???;

return s.GetMarketValue();

// works regardless of what s is

return s->vtable[1](s);

Java: C pseudo-translation:

code for DividendStock’s GetMarketValue()

code for GetDividend()

xvtable yheader

DividendStock object

z

DividendStock

vtable:

CSE333, Autumn 2019L17: C++ Inheritance I

vtable/vptr Example

30

class Base {

public:

virtual void func1();

virtual void func2();

};

class Der1 : public Base {

public:

virtual void func1();

};

class Der2 : public Base {

public:

virtual void func2();

};

Base b;

Der1 d1;

Der2 d2;

Base *b0ptr = &b;

Base *b1ptr = &d1;

Base *b2ptr = &d2;

b0ptr->func1(); //

b0ptr->func2(); //

b1ptr->func1(); //

b1ptr->func2(); //

d2.func1(); //

b2ptr->func1(); //

b2ptr->func2(); //

CSE333, Autumn 2019L17: C++ Inheritance I

vtable/vptr Example

31

class Base {

public:

virtual void func1();

virtual void func2();

};

class Der1 : public Base {

public:

virtual void func1();

};

class Der2 : public Base {

public:

virtual void func2();

};

Base b;

Der1 d1;

Der2 d2;

Base *b0ptr = &b;

Base *b1ptr = &d1;

Base *b2ptr = &d2;

b0ptr->func1(); //

b0ptr->func2(); //

b1ptr->func1(); //

b1ptr->func2(); //

d2.func1(); //

b2ptr->func1(); //

b2ptr->func2(); //

CSE333, Autumn 2019L17: C++ Inheritance I

vtable/vptr Example

32

Base b;

Der1 d1;

Der2 d2;

Base *bptr = &d1;

bptr->func1();

// bptr -->

// d1.vptr -->

// Der1.vtable.func1

// -->

// Base::func1()

bptr = &d2;

bptr->func1();

// bptr -->

// d2.vptr -->

// Der2.vtable.f1 -->

// Base::f1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base

func1()

func2()

Der1

func1()

func2()

Der2

func1()

func2()

Base::func1()

push %rbp

...

Base::func2()

push %rbp

...

Der1::func1()

push %rbp

...

Der2::func2()

push %rbp

...

CSE333, Autumn 2019L17: C++ Inheritance I

Let’s Look at Some Actual Code

❖ Let’s examine the following code using objdump

▪ g++ -Wall –g –std=c++11 -o vtable vtable.cc

▪ objdump -CDS vtable > vtable.d

33

class Base {

public:

virtual void func1();

virtual void func2();

};

class Der1 : public Base {

public:

virtual void func1();

};

int main(int argc, char **argv) {

Der1 d1;

d1.func1();

Base *bptr = &d1;

bptr->func1();

}

vtable.cc

