
CSE333, Autumn 2019L12: C++ Heap, Deep Copies

C++ Heap, Deep Copies
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

pollev.com/cse333

About how long did Exercise 9 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I prefer not to say

2

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Administrivia

❖ Exercise 11 released today, due Wednesday
▪ Implement Vector: dynamically allocated memory, practice

with friend functions

▪ Refer to Str.h/Str.cc

❖ Homework 2 due this Thursday (10/24)

▪ 😱😱😱

3

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Lecture Outline

❖ 💥 Destructors! 💥

❖ Using the Heap in C++
▪ new / delete / delete[]

❖ Deep Copies: Why Defaults Matter

❖ Operators and Friends

4

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Destructors

❖ C++ has the notion of a destructor (dtor)

▪ Invoked automatically when a class instance is deleted, goes out
of scope, etc. (even via exceptions or other causes!)

▪ Place to put your cleanup code

▪ A standard C++ idiom for managing dynamic resources!

• Slogan: “Resource Acquisition Is Initialization” (RAII)

5

Point::~Point() { // destructor

// do any cleanup needed when a Point object goes away

// (nothing to do here since we have no dynamic resources)

}

FileCloser fc(fd);

Mutex m(&atomic_variable);

Deleter d(&mybuffer);

Rollbacker rb;

if (sqlQuery.success()) {

rb.setCanCommitTxn(true);

}

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Lecture Outline

❖ 💥 Destructors! 💥

❖ Using the Heap in C++
▪ new / delete / delete[]

❖ Deep Copies: Why Defaults Matter

❖ Operators and Friends

7

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

An Aside: C++11 nullptr

❖ C/C++ have long used NULL as an invalid pointer value

❖ C++11 introduced a new literal for this: nullptr

▪ New reserved word

▪ Basically interchangeable with NULL … but typesafe!

• It has type T* for any/every T, and is not an integer value

▪ Advice: prefer nullptr in C++11 code

8

void foo(int i); // #1

void foo(char *str); // #2

foo(0); // Calls #1

foo(“bar"); // Calls #2

foo(NULL); // Calls #1. Why is there no sad trombone emoji?

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Dynamically-allocated instances: new/delete

❖ To allocate on the heap, use the new keyword

▪ Same for objects (e.g. new Point) and primitive types (e.g. new
int)

▪ Will call the appropriate constructor for class instances!

❖ To deallocate, use the delete keyword

❖ Built into the language; no need for <stdlib.h>

❖ Don’t mix and match!
▪ Never free() something allocated with new

▪ Never delete something allocated with malloc()

▪ Careful if you’re using a legacy C code library or module in C++
9

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

new/delete Example

10

#include "Point.h"

using std::cout;

using std::endl;

... // definitions of AllocateInt() and AllocatePoint()

int main(int argc, char **argv) {

Point *x = AllocatePoint(1, 2);

int *y = AllocateInt(3);

cout << "x's x_ coord: " << x->x() << endl;

cout << "y: " << y << ", *y: " << *y << endl;

delete x;

delete y;

return EXIT_SUCCESS;

}

int* AllocateInt(int x) {

int *heapy_int = new int;

*heapy_int = x;

return heapy_int;

}

Point* AllocatePoint(int x, int y) {

Point *heapy_pt = new Point(x,y);

return heapy_pt;

}

heappoint.cc

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Dynamically-allocated arrays: new/delete[]

❖ To dynamically allocate an array:

▪ Default initialize:

❖ To dynamically deallocate an array:

▪ Use delete[] name;

▪ It is incorrect to use “delete name;” on an array

• The compiler probably won’t catch this (!) -- it can’t tell if name* was
allocated with new type[size] or new type;

• Result of wrong delete is undefined behavior

11

type *name = new type[size];

delete[] name;

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Arrays Example: (leaking some) primitives

12

#include "Point.h"

int main(int argc, char **argv) {

int stack_int;

int *heap_int = new int;

int *heap_int_init = new int(12);

int stack_arr[3];

int *heap_arr = new int[3];

int *heap_arr_init_val = new int[3]();

int *heap_arr_init_lst = new int[3]{4, 5}; // C++11

...

delete heap_int; // (1)

delete heap_int_init; // (2)

delete heap_arr; // (3)

delete[] heap_arr_init_val; // (4)

return EXIT_SUCCESS;

}

arrays.cc

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Arrays Example: class objects

13

#include "Point.h"

int main(int argc, char **argv) {

...

Point stack_pt(1, 2);

Point *heap_pt = new Point(1, 2);

Point *heap_pt_arr_init_lst = new Point[2]{{1, 2}, {3, 4}};

// C++11

...

delete heap_pt;

delete[] heap_pt_arr_init_lst;

return EXIT_SUCCESS;

}

arrays.cc

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects,

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

14

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Lecture Outline

❖ 💥 Destructors! 💥

❖ Using the Heap in C++
▪ new / delete / delete[]

❖ Deep Copies: Why Defaults Matter

❖ Operators and Friends

15

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

pollev.com/cse333

❖ What will happen when we invoke bar()?

▪ If there is an error,
how would you fix it?

A. Bad dereference

B. Bad delete

C. Memory leak

D. “Works” fine

E. I’m not sure …

16

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

foo_ptr_ = new int;

*foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo &rhs) {

delete foo_ptr_;

Init(*(rhs.foo_ptr_));

return *this;

}

void bar() {

Foo a(10);

const Foo &b = a;

a = b;

}

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

What’s In a Default, Anyway?

❖ Compiler-provided cctor and operator= are basically

memcpy when copied members are primitive types

17

class Point {

// ...

private:

int x_, y_;

};

Point p2 = p1;

class Str {

// ...

private:

char *st_;

};

Str s2 = s1;

class Node {

// ...

private:

LLPayload_t payload_;

};

Node n2 = n1;

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Shallow vs Deep Copies

❖ The byte-by-byte memcpy-style copy is a shallow copy

❖ Copying pointed-to fields is known as a deep copy

▪ Necessary for more complex class definitions that must “release”
internally-held resources (eg, file handles, dynamic memory)

▪ If deep copies are necessary, must implement both the copy
constructor and assignment operator

18

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Rule of Three

❖ If you define any of:

1) Destructor

2) Copy Constructor

3) Assignment (operator=)

❖ Then you probably need to define all three

▪ Can explicitly ask for default synthesized versions (C++11):

19

class Point {

public:

Point() = default; // the default ctor

~Point() = default; // the default dtor

Point(const Point& copyme) = default; // the default cctor

Point& operator=(const Point& rhs) = default; // the default "="

...

“More what you would call a
guideline than an actual rule”

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Avoiding the Insanity (of deep copies)

❖ Thanks to C++ destructors, we can do complicated (but
cool) things with object lifetimes

❖ But now we have to be thoughtful about copy semantics

▪ What does it mean to “copy” an object that manages a dynamically-
allocated buffer?

▪ What does it mean to “assign” a mutex?

❖ Best practice: Implement both xor disable both

20

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Avoiding the Insanity (of deep copies)

❖ Pre-C++11:

▪ Disable the copy constructor and assignment operator by declaring
as private and not defining them

21

class UncopyablePoint {

public:

UncopyablePoint(int x, int y) : x_(x), y_(y) { } // ctor

...

private:

UncopyablePoint(const UncopyablePoint& copyme);

UncopyablePoint& operator=(const UncopyablePoint& rhs);

...

}; // class Point

UncopyablePoint w; // compiler error (no default constructor)

UncopyablePoint x(1, 2); // OK!

UncopyablePoint y = w; // compiler error (no copy constructor)

y = x; // compiler error (no assignment operator)

UncopyablePoint.h

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Avoiding the Insanity (of deep copies)

❖ C++11 added new syntax to do this directly

▪ This is the better choice in C++11 code

22

class UncopyablePoint {

public:

UncopyablePoint(int x, int y) : x_(x), y_(y) { }

...

UncopyablePoint(const UncopyablePoint& copyme) = delete;

UncopyablePoint& operator=(const UncopyablePoint& rhs) = delete;

private:

...

}; // class UncopyablePoint

UncopyablePoint w; // compiler error (no default constructor)

UncopyablePoint x(1, 2); // OK!

UncopyablePoint y = w; // compiler error (no copy constructor)

y = x; // compiler error (no assignment operator)

UncopyablePoint.h

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Avoiding the Insanity (of deep copies)

❖ A CopyFrom function can be used manually by the

caller when occasionally needed

❖ Or you can use it to implement both cctor and assign op

23

class UncopyablePoint {

public:

UncopyablePoint(int x, int y) : x_(x), y_(y) { } // ctor

void CopyFrom(const UncopyablePoint ©me);

...

UncopyablePoint(const Point ©me) = delete;

UncopyablePoint& operator=(const UncopyablePoint &rhs) = delete;

private:

...

}; // class UncopyablePoint

UncopyablePoint2011.h

UncopyablePoint x(1, 2); // OK

UncopyablePoint y(3, 4); // OK

x.CopyFrom(y); // OK

sanepoint.cc

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Lecture Outline

❖ 💥 Destructors! 💥

❖ Using the Heap in C++
▪ new / delete / delete[]

❖ Deep Copies: Why Defaults Matter

❖ Operators and Friends

24

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Review: Nonmember Functions

❖ “Nonmember functions” are just normal functions that
happen to use some class

▪ Called like a regular function, not as a member of a class instance

▪ These do not have access to the class’ private members

❖ Useful nonmember functions often included as part of
interface to a class

▪ Declaration goes in header file, but outside of class definition

26

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Review: Operator Overloading

❖ Can overload operators using member functions

▪ Restriction: left-hand side argument must be a class you are
implementing

❖ Can overload operators using nonmember functions

▪ No restriction on arguments (can specify any two)

• Our only option when the left-hand side is a class you do not have
control over, like ostream or istream.

▪ But no access to private data members

27

Str operator+(const Str &a, const Str &b) { ... }

Str& operator+=(const Str &s) { ... }

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

friend Nonmember Functions

❖ A class can give a nonmember function (or class) access to
its non-public members by declaring it as a friend
within its definition

▪ Not a class member, but has access privileges as if it were

▪ friend functions are usually unnecessary if your class includes
appropriate public “getter” functions

28

class Str {

...

friend std::ostream& operator<<(std::ostream &out, Str &s);

...

}; // class Point

std::ostream& operator<<(std::ostream &out, Str &s) {

...

}

Str.h

Str.cc

CSE333, Autumn 2019L12: C++ Heap, Deep Copies

Extra Exercise #1

❖ Write a C++ function that:
▪ Uses new to dynamically allocate an array of strings and uses
delete[] to free it

▪ Uses new to dynamically allocate an array of pointers to strings

• Assign each entry of the array to a string allocated using new

▪ Cleans up before exiting

• Use delete to delete each allocated string

• Uses delete[] to delete the string pointer array

• (whew!)

35

