
CSE333, Autumn 2019L11: C++ Constructor Insanity

C++ Contructor🤯INSANITY🤯
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L11: Constructor Insanity

pollev.com/cse333

About how long did Exercise 8 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I didn’t submit / I prefer not to say

2

CSE333, Autumn 2019L11: C++ Constructor Insanity

Administrivia

❖ Exercise 9 released today, due Monday

▪ Write a substantive class in C++ (but no dynamic allocation – yet)

▪ First submitted Makefile!

❖ Homework 2 due next Thursday (10/24)

▪ More complex than HW1: file system crawler, indexer, and search
engine

3

CSE333, Autumn 2019L11: C++ Constructor Insanity

Lecture Outline

❖ Intro to Classes in C++

❖ Constructors

❖ Copy Constructors

❖ Assignment

4

CSE333, Autumn 2019L11: C++ Constructor Insanity

Classes

❖ Class definition syntax (in a .h file):

▪ Members can be functions (methods) or data (variables)

❖ Class member function definition syntax (in a .cc file):

▪ (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

5

class Name {

public:

// public member definitions & declarations go here

private:

// private member definitions & declarations go here

}; // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {

// body statements

}

CSE333, Autumn 2019L11: C++ Constructor Insanity

Class Organization

❖ Similar conceptually to C when modularizing with structs:

▪ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)

▪ Usually put member function definitions into companion .cc file

• Common exception: setter and getter methods

▪ Both can also include non-member functions that use the class

❖ Unlike Java, you can name files anything you want
▪ Typically Name.cc and Name.h for class Name

6

CSE333, Autumn 2019L11: C++ Constructor Insanity

Class Definition (.h file)

7

#ifndef POINT_H_

#define POINT_H_

class Point {

public:

Point() { } // inline constructor defn

Point(int x, int y); // constructor

int x() const { return x_; } // inline method defn

int y() const { return y_; } // inline method defn

double Distance(const Point &p) const; // method decl

void SetLocation(int x, int y); // method decl

private:

int x_; // data member

int y_; // data member

}; // class Point

#endif // POINT_H_

Point.h

CSE333, Autumn 2019L11: C++ Constructor Insanity

Class Member Definitions (.cc file)

8

#include "Point.h"

#include <cmath>

Point::Point(int x, int y) {

x_ = x;

this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point &p) const {

// We can access p’s x and y values either through (1) the x()

// and y() accessor functions or (2) the x_ and y_ private

// member variables directly (since we’re in a member

// function of the same class).

double distance = (x_ - p.x()) * (x_ - p.x());

distance += (y_ - p.y_) * (y_ - p.y_);

return sqrt(distance);

}

void Point::SetLocation(int x, int y) {

x_ = x;

y_ = y;

}

Point.cc

CSE333, Autumn 2019L11: C++ Constructor Insanity

Class Usage (.cc file)

9

#include "Point.h"

#include <iostream>

using std::cout;

using std::endl;

int main(int argc, char **argv) {

Point p1(1, 2); // allocate a new Point on the stack

const Point p2(4, 6); // allocate a new Point on the stack

cout << "p1 is: (" << p1.x() << ", ";

cout << p1.y() << ")" << endl;

cout << "p2 is: (" << p2.x() << ", ";

cout << p2.y() << ")" << endl;

cout << "dist : " << p1.Distance(p2) << endl;

p1.SetLocation(2, 1); // YES: non-const method on

// non-const instance

p2.SetLocation(6, 4); // NO: non-const method on const instance

return 0;

}

usepoint.cc

CSE333, Autumn 2019L11: C++ Constructor Insanity

struct vs. class

❖ In C, a struct can only contain data fields

▪ No methods and all fields are always accessible

❖ In C++, struct and class are (nearly) the same!

▪ Both can have methods and member visibility
(public/private/protected)

▪ Minor difference: members are default public in a struct and
default private in a class

❖ Common style convention:
▪ Use struct for simple bundles of data

▪ Use class for abstractions with data + functions

10

CSE333, Autumn 2019L11: C++ Constructor Insanity

Lecture Outline

❖ Intro to Classes in C++

❖ Constructors

❖ Copy Constructors

❖ Assignment

11

CSE333, Autumn 2019L11: C++ Constructor Insanity

Constructors

❖ A constructor (ctor) initializes a newly-instantiated object

▪ A class can have multiple constructors that differ in parameters

• Which one is invoked depends on how the object is instantiated

❖ The “default constructor” takes no arguments

▪ Eg, it’s invoked for every element in an array

❖ Written with the class name as the method name:

▪ C++ will automatically create a synthesized default constructor if
you have no user-defined constructors

• Takes no arguments and calls the default ctor on all non-“plain old
data” (non-POD) member variables

• Synthesized default ctor will fail if you have non-initialized const or
reference data members

12

Point(int x, int y); Point();

CSE333, Autumn 2019L11: C++ Constructor Insanity

Synthesized Default Constructor

13

class Point {

public:

// no constructors declared!

int x() const { return x_; } // inline member function

int y() const { return y_; } // inline member function

double Distance(const SimplePoint& p) const;

void SetLocation(int x, int y);

private:

int x_; // data member

int y_; // data member

}; // class SimplePoint Point.h

#include "Point.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char **argv) {

Point x; // invokes synthesized default constructor

return EXIT_SUCCESS;

}

Point.cc

CSE333, Autumn 2019L11: C++ Constructor Insanity

Synthesized Default Constructor

❖ If you define any constructors, C++ assumes you have
defined all the ones you intend to be available and will
not add any others

14

#include "Point.h"

// defining a constructor with two arguments

Point::Point(int x, int y) {

x_ = x;

y_ = y;

}

void foo() {

Point x; // compiler error: if you define any

// ctors, C++ will NOT synthesize a

// default constructor for you.

Point y(1, 2); // works: invokes the 2-int-arguments

// constructor

}

CSE333, Autumn 2019L11: C++ Constructor Insanity

Multiple Constructors (overloading)

15

#include "Point.h"

// default constructor

Point::Point() {

x_ = 0;

y_ = 0;

}

// constructor with two arguments

Point::Point(int x, int y) {

x_ = x;

y_ = y;

}

void foo() {

Point x; // invokes the default constructor

Point a[3]; // invokes the default ctor 3 times

Point y(1, 2); // invokes the 2-int-arguments ctor

}

Point.cc

CSE333, Autumn 2019L11: C++ Constructor Insanity

Initialization Lists

❖ C++ lets you optionally declare an initialization list as part
of a constructor definition

▪ Initializes fields according to parameters in the list

▪ The following two are (nearly) identical:

16

// constructor with an initialization list

Point::Point(int x, int y) : x_(x), y_(y) {

std::cout << "Point constructed: (" << x_ << ",";

std::cout << y_<< ")" << std::endl;

}

Point::Point(int x, int y) {

x_ = x;

y_ = y;

std::cout << "Point constructed: (" << x_ << ",";

std::cout << y_<< ")" << std::endl;

}

Point.cc

CSE333, Autumn 2019L11: C++ Constructor Insanity

Initialization vs. Construction

▪ Member variables are constructed in the order they are defined in
the class, not by the initialization list ordering (!)

• Member construction always happens before ctor body is executed

• Data members that don’t appear in the initialization list are default
initialized/constructed

▪ Initialization preferred to assignment to avoid extra steps

• Real code should never mix the two styles
17

class Point3D {

public:

// constructor with 3 int arguments

Point3D(int x, int y, int z) : y_(y), x_(x) {

z_ = z;

}

private:

int x_, y_, z_; // data members

}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

CSE333, Autumn 2019L11: C++ Constructor Insanity

Lecture Outline

❖ Intro to Classes in C++

❖ Constructors

❖ Copy Constructors

❖ Assignment

18

CSE333, Autumn 2019L11: C++ Constructor Insanity

Copy Constructors

❖ C++ has the notion of a copy constructor (cctor)

▪ Used to create a new object as a copy of an existing object

19

Point::Point(int x, int y) : x_(x), y_(y) { }

// copy constructor

Point::Point(const Point ©me) {

x_ = copyme.x_;

y_ = copyme.y_;

}

void foo() {

Point x(1, 2); // invokes the 2-int-arguments constructor

Point y(x); // invokes the copy constructor

// could also be written as "Point y = x;"

}

▪ Initializer lists can also be used in copy constructors (preferred)

CSE333, Autumn 2019L11: C++ Constructor Insanity

Synthesized Copy Constructor

❖ If you don’t define your own copy constructor, C++ will
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e. member variables)

▪ Sometimes the right thing; sometimes the wrong thing

20

#include "Point.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char **argv) {

Point x;

Point y(x); // invokes synthesized copy constructor

...

return EXIT_SUCCESS;

}

CSE333, Autumn 2019L11: C++ Constructor Insanity

When Do Copies Happen?

❖ The copy constructor is invoked if:

▪ You initialize an object from
another object of the same
type:

▪ You pass a non-reference
object as a value parameter
to a function:

▪ You return a non-reference
object value from a function:

21

void foo(Point x) { ... }

Point y; // default ctor

foo(y); // copy ctor

Point x; // default ctor

Point y(x); // copy ctor

Point z = y; // copy ctor 🤯

Point foo() {

Point y; // default ctor

return y; // copy ctor

}

CSE333, Autumn 2019L11: C++ Constructor Insanity

Compiler Optimization

❖ The compiler sometimes uses “return by value
optimization” or “move semantics” to eliminate
unnecessary copies

▪ May not see a copy constructor invoked when you might expect it

22

Point foo() {

Point y; // default ctor

return y; // copy ctor? optimized?

}

Point x(1, 2); // two-ints-argument ctor

Point y = x; // copy ctor

Point z = foo(); // copy ctor? optimized?

CSE333, Autumn 2019L11: C++ Constructor Insanity

Lecture Outline

❖ Intro to Classes in C++

❖ Constructors

❖ Copy Constructors

❖ Assignment

23

CSE333, Autumn 2019L11: C++ Constructor Insanity

Assignment != Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object

24

Point w; // default ctor

Point x(1, 2); // two-ints-argument ctor

Point y(x); // copy ctor

Point z = w; // copy ctor

y = x; // assignment operator

CSE333, Autumn 2019L11: C++ Constructor Insanity

Overloading the “=” Operator

❖ You can choose to define the “=” operator

▪ But there are some rules you should follow:

25

Point& Point::operator=(const Point &rhs) {

if (this != &rhs) { // (1) always check against this, to

x_ = rhs.x_; // protect against self-assignment

y_ = rhs.y_;

}

return *this; // (2) always return *this from op=

}

Point a, b, c; // default constructor

a = b = c; // works because = return *this

a = (b = c); // equiv. to above (= is right-associative)

(a = b) = c; // "works" because = returns a non-const

CSE333, Autumn 2019L11: C++ Constructor Insanity

Synthesized Assignment Operator

❖ If you don’t define the assignment operator, C++ will
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e. member variables)
Sometimes the right thing; sometimes the wrong thing

26

#include "Point.h"

... // no decl/defn for operator=

int main(int argc, char **argv) {

Point x;

Point y(x);

y = x; // invokes synthesized assignment operator

return EXIT_SUCCESS;

}

CSE333, Autumn 2019L11: C++ Constructor Insanity

What Gets Called When?

27

#include "Point.h"

Point Helper(const Point &parg) { // 4) no ctor; pass-by-ref

Point p4; // 5) default ctor

p4 = parg; // 6) assignment operator

return p4; // 7) copy ctor copies p4 into

// main()’s stack frame

}

int main(int argc, char **argv) {

Point p1(1, 1); // 1) 2-arg ctor

Point p2 = p1; // 2) copy ctor

Point p3 = Helper(p1); // 8) p3 initialized by copy ctor from

// Helper()’s also-copied instance

// (see step 7)

return 0;

}

noisycopies.cc

CSE333, Autumn 2019L11: C++ Constructor Insanity

Extra Exercise #1

❖ Modify your Point3D class from Lec 10 Extra #1

▪ Disable the copy constructor and assignment operator

▪ Attempt to use copy & assignment in code and see what error the
compiler generates

▪ Write a CopyFrom() member function and try using it instead

• (See details about CopyFrom() in next lecture)

28

CSE333, Autumn 2019L11: C++ Constructor Insanity

Extra Exercise #2

❖ Write a C++ class that:

▪ Is given the name of a file as a constructor argument

▪ Has a GetNextWord() method that returns the next
whitespace- or newline-separated word from the file as a copy of
a string object, or an empty string once you hit EOF

▪ Has a destructor that cleans up anything that needs cleaning up

29

