
CSE333, Autumn 2019L9: Intro to C++

Introduction to C++
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L9: Intro to C++

pollev.com/cse333

About how long did Exercise 6 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I didn’t finish / I prefer not to say

2

CSE333, Autumn 2019L9: Intro to C++

Administrivia

❖ Exercise 7 released today, due Wednesday

❖ Homework 2 due next Thursday (10/24)

▪ File system crawler, indexer, and search engine with C-style
inheritance!

▪ Remember to place a copy of libhw1.a in the hw1/ directory

• Either yours (which gets generated there) or ours (copy from
hw1/solution_binaries)

▪ Demo: Use Ctrl+D to exit, test on your own small directory

3

CSE333, Autumn 2019L9: Intro to C++

Today’s Goals

❖ An introduction to C++

▪ Give you a perspective on how to learn C++

▪ Kick the tires and look at some code

❖ Advice: Read related sections in the C++ Primer

▪ It’s hard to learn the “why is it done this way” from reference
docs, and even harder to learn from random
StackOverflow/GitHub/etc on the web

▪ Lectures and examples will introduce the main ideas, but aren’t
everything you’ll want need to understand

4

CSE333, Autumn 2019L9: Intro to C++

C: Encapsulation, Abstraction, OOP

❖ Header file conventions and the static specifier to
separate “private” functions/definitions/constants from
“public”

❖ Forward-declared structs and opaque pointers to hide
implementation-specific details

❖ Cannot associate behavior with encapsulated state
▪ LinkedList “methods” not really tied to struct LinkedList

tl;dr: Implemented primarily via coding conventions

5

CSE333, Autumn 2019L9: Intro to C++

C++: Encapsulation, Abstraction, OOP

❖ Classes! 🎉🎉🎉 Objects! 🎉🎉🎉
▪ Public, private, and protected access specifiers

▪ Methods and instance variables (“this”)

▪ (Multiple 😱!) inheritance

❖ Polymorphism

▪ Static polymorphism (“overloading”): multiple functions or
methods with the same name but different argument types

• Works for all functions, not just class members

▪ Dynamic (subtype) polymorphism: derived classes can override
parent’s methods, and methods will be dispatched correctly

6

CSE333, Autumn 2019L9: Intro to C++

C: Generics

❖ Generic linked list / hash table using void* payload
▪ LLPayload_t p = (LLPayload_t)256L; // 😱

❖ Function pointers to generalize different behaviour for
data structures

▪ Comparisons, deallocation, pickling up state, etc.

tl;dr: Implemented primarily by disabling type system

7

CSE333, Autumn 2019L9: Intro to C++

C++: Generics

❖ Templates to facilitate generic data types

▪ Parametric polymorphism: same idea as Java generics, but
different in details, particularly implementation

▪ A vector of ints: vector<int> x;

▪ A vector of floats: vector<float> x;

▪ A vector of (vectors of floats): vector<vector<float>> x;

❖ Specialized casts to increase type safety

▪ LLPayload_t p =

static_cast<LLPayload_t>(256); // lol no

8

CSE333, Autumn 2019L9: Intro to C++

C: Namespaces

❖ Names are global and visible everywhere
▪ Can use static to prevent a name from being visible outside a

source file (as close as C gets to “private”)

❖ Naming conventions to avoid collisions in global
namespace
▪ e.g. LinkedList_Allocate vs. HTIterator_Next, etc.

tl;dr: Implemented primarily via coding conventions

9

CSE333, Autumn 2019L9: Intro to C++

C++: Namespaces

❖ Explicit namespaces!
▪ The linked list module could define an “LL” namespace while the

hash table module could define an “HT” namespace

▪ Both modules could define an Iterator class

• One would be globally named LL::Iterator and the other would
be globally named HT::Iterator

❖ Classes also allow duplicate names without collisions

▪ Classes can also define their own pseudo-namespace, very similar
to Java static inner classes

10

CSE333, Autumn 2019L9: Intro to C++

C: Standard Library

❖ C does not provide any standard data structures

▪ We had to implement our own linked list and hash table

❖ Hopefully you can use somebody else’s libraries

▪ But C’s lack of abstraction, encapsulation, and generics means
you’ll probably need to tweak them or tweak your code in order
to use

tl;dr: YOU implement the data structures you need

11

CSE333, Autumn 2019L9: Intro to C++

C++: Standard Library

❖ Generic containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

▪ And iterators for most of these

❖ A string class: hides the implementation of strings

❖ Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

❖ Generic algorithms: sort, filter, remove duplicates, etc.

12

CSE333, Autumn 2019L9: Intro to C++

C: Error Handling

❖ Define error codes and return them
▪ Either directly or via a “global” like errno

▪ No type-checking: does 1 mean EXIT_FAILURE or true?

❖ Customers and implementors need to constantly test
return values
▪ e.g. if a() calls b(), which calls c()

• a depends on b to propagate an error in c back to it

tl;dr: Mixture of coding conventions and discipline

13

CSE333, Autumn 2019L9: Intro to C++

C++: Error Handling

❖ Supports exceptions!
▪ try / throw / catch, but no finally

▪ If used with discipline, can simplify error processing

▪ If used carelessly, can complicate memory management

• Consider: a() calls b(), which calls c()

– If c() throws an exception that b() doesn’t catch, you might not get a
chance to clean up resources allocated inside b()

❖ We will largely avoid in 333

▪ You still benefit from having more interpretable errors!

14

CSE333, Autumn 2019L9: Intro to C++

Some Tasks Still Hurt in C++

❖ Memory management

▪ C++ has no garbage collector

• You have to manage allocation / deallocation and track

• It’s still possible to have leaks, double frees, and so on

▪ But there are some things that help

• “Smart pointers”

– Classes that encapsulate pointers and track reference counts

– Deallocate memory when the reference count goes to zero

• C++’s destructors permit a pattern known as “Resource Allocation Is
Initialization” (RAII)

– Useful for releasing memory, locks, database transactions, and more

15

CSE333, Autumn 2019L9: Intro to C++

Some Tasks Still Hurt in C++

❖ C++ doesn’t guarantee type or memory safety

▪ You can still:

• Forcibly cast one type to an incompatible type

• Walk off the end of an array and smash memory

• Have dangling pointers

• Conjure up a pointer to an arbitrary address of your choosing

16

CSE333, Autumn 2019L9: Intro to C++

How to Think About C++

18

Set of styles
and ways to

use C++

Set of styles
and ways to

use C

Good styles
and robust
engineering

practices

Style
guides

CSE333, Autumn 2019L9: Intro to C++

Or…

19

In the hands of a disciplined
programmer, C++ is a

powerful tool

But if you’re not so
disciplined about how you

use C++…

CSE333, Autumn 2019L9: Intro to C++

Hello World in C

❖ You never had a chance to write this!
▪ Compile with gcc:

▪ Based on what you know now, describe to your neighbor
everything that goes on in the execution of this “simple” program

• Be detailed!

20

#include <stdio.h> // for printf()

#include <stdlib.h> // for EXIT_SUCCESS

int main(int argc, char **argv) {

printf("Hello, World!\n");

return EXIT_SUCCESS;

}

gcc -Wall -g -std=c11 -o helloworld helloworld.c

helloworld.c

CSE333, Autumn 2019L9: Intro to C++

Hello World in C++

❖ Looks simple enough…
▪ Compile with g++ instead of gcc:

▪ Let’s walk through the program step-by-step to highlight some
differences

21

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

g++ -Wall -g -std=c++11 -o helloworld helloworld.cc

helloworld.cc

CSE333, Autumn 2019L9: Intro to C++

Hello World in C++

❖ iostream is part of the C++ standard library

▪ Note: you don’t write “.h” when you include C++ standard library
headers

• But you do for local headers (e.g. #include "ll.h")

▪ iostream declares stream object instances in the “std”
namespace

• e.g. std::cin, std::cout, std::cerr

22

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2019L9: Intro to C++

Hello World in C++

❖ cstdlib is the C standard library’s stdlib.h

▪ Nearly all C standard libraries are still available

• For C header foo.h, you should #include <cfoo>

▪ We include it here for EXIT_SUCCESS, as usual

23

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2019L9: Intro to C++

Hello World in C++

❖ C++ distinguishes between objects and primitive types

▪ These include the familiar ones from C:
char, short, int, long, float, double, etc.

▪ C++ also defines bool as a primitive type (woo-hoo!)

• Use it!

24

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2019L9: Intro to C++

Hello World in C++

❖ std::cout is the “cout” object instance declared by
iostream, living within the “std” namespace

▪ C++’s name for stdout

▪ std::cout is an instance of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/

▪ Used to format and write output to the console

▪ The entire standard library is in the namespace std

25

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

http://www.cplusplus.com/reference/ostream/ostream/

CSE333, Autumn 2019L9: Intro to C++

Hello World in C++

❖ “<<” is an operator defined by the C++ language

▪ Defined in C as well: usually it bit-shifts integers (in C/C++)

▪ C++ allows classes and functions to overload operators!

• Here, the ostream class overloads “<<”

• i.e. it defines different member functions (methods) that are invoked
when an ostream is the left-hand side of the << operator

26

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2019L9: Intro to C++

Hello World in C++

❖ ostream has many different methods to handle <<

▪ The functions differ in the type of the right-hand side (RHS) of <<

▪ e.g. if you do std::cout << "foo"; , then C++ invokes
cout’s function to handle << with RHS char*

std::cout << "foo";

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2019L9: Intro to C++

Hello World in C++

❖ The ostream class’ member functions that handle <<
return a reference to themselves
▪ When std::cout << "Hello, World!"; is evaluated:

• A member function of the std::cout object is invoked

• It buffers the string "Hello, World!" for the console

• And it returns a reference to std::cout

28

std::cout << "Hello, World!";

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2019L9: Intro to C++

Hello World in C++

❖ Next, another member function on std::cout is
invoked to handle << with std::endl as its param

▪ std::endl is a “stream manipulator” function

• Writes newline ('\n') to the ostream it is invoked on and then
flushes the ostream’s buffer

• This enforces that something is printed to the console at this point

29

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2019L9: Intro to C++

Wow…

❖ You should be surprised and scared at this point

▪ C++ makes it easy to hide a significant amount of complexity

• It’s powerful, but really dangerous

• Once you mix everything together (templates, operator overloading,
method overloading, generics, multiple inheritance), it can get really
hard to know what’s actually happening!

30

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {

std::cout << "Hello, World!" << std::endl;

return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Autumn 2019L9: Intro to C++

Extra Exercise #1

❖ Write a C++ program that uses stream to:

▪ Prompt the user to type 5 floats

▪ Prints them out in opposite order with 4 digits of precision

31

